Plethysms, polynomial representations of linear groups and Hermite reciprocity over an arbitrary field

Mark Wildon



OIST April 2021

## Outline

§1 Motivation: the Wronskian isomorphism
§2 Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$
§3 Plethysms for $\mathrm{SL}_{2}(\mathbb{C})$ and Stanley's Hook Content Formula
§4 Modular plethystic isomorphisms

Sections 2 and 3 are with Rowena Paget, based on

- Plethysms of symmetric functions and representations of $\mathrm{SL}_{2}(\mathbb{C})$, arXiv:1907.07616, July 2019
To appear in Journal of Algebraic Combinatorics.
Sections 1 and 4 are with my Ph.D student Eoghan McDowell, based on
- Modular plethystic isomorphisms for two-dimensional linear groups arXiv: by this Friday


## §1 Motivation: A modular Wronskian isomorphism

Let $V$ be a vector space.

$$
\begin{aligned}
\mathrm{Sym}^{2} V & =V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle \\
& =\langle v w: v \in V, w \in V\rangle \\
\Lambda^{2} V & =V^{\otimes 2} /\langle v \otimes v: v \in V\rangle \\
& =\langle v \wedge w: v \in V, w \in V\rangle
\end{aligned}
$$

## §1 Motivation: A modular Wronskian isomorphism

Let $V$ be a vector space.

$$
\begin{aligned}
\operatorname{Sym}^{2} V & =V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle \\
& =\langle v w: v \in V, w \in V\rangle \\
\Lambda^{2} V & =V^{\otimes 2} /\langle v \otimes v: v \in V\rangle \\
& =\langle v \wedge w: v \in V, w \in V\rangle
\end{aligned}
$$

Observation. Sym $^{2} \mathbb{C}^{n}$ and $\bigwedge^{2} \mathbb{C}^{n+1}$ both have dimension $\binom{n+1}{2}$.

- For instance, if $v_{1}, \ldots, v_{n}$ is a basis for $\mathbb{C}^{n}$ then $\operatorname{Sym}^{2} \mathbb{C}^{n}$ has basis $v_{1}^{2}, \ldots, v_{n}^{2}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}$ of size $n+\binom{n}{2}$.

Question. Asked by asaəŋзs xormosds on MathOverflow: Is there a natural isomorphism between these vector spaces?

## §1 Motivation: the Wronskian isomorphism Are there nice isomorphisms $\mathrm{S}^{2}\left(k^{n}\right) \cong \Lambda^{2}\left(k^{n+1}\right)$ ?

Asked 1 year, 1 month ago Active 1 year, 1 month ago Viewed 349 times

This might be forced to migrate to math.SE but let me still risk it.
The spaces $\mathrm{S}^{2}\left(k^{n}\right)$ and $\Lambda^{2}\left(k^{n+1}\right)$ from the title have equal dimensions. Is there a natural isomorphism between them?
asked Jan 15 '19 at 9:45

$13.9 k \cdot 3 \cdot 50-125$

Let $E$ be a 2-dimensional $k$-vector space. The Wronksian isomorphism is an isomorphism of $\operatorname{SL}(\boldsymbol{E})$ modules $\bigwedge^{m} \mathrm{~S}^{m+r-1}(E) \cong \mathrm{S}^{m} \mathrm{~S}^{r}(E)$. It is easiest to deduce it from the corresponding identity in 19 symmetric functions (specialized to 1 and $q$ ), but it can also be defined explicitly: see for example Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying $\mathrm{S}^{n}(\boldsymbol{E})$ with the homogeneous polynomial functions on $E$ of degree $n$, their definition becomes the map $\wedge^{2} S^{n}(E) \rightarrow S^{2} S^{n-1}(E)$ defined by

$$
f \wedge g \mapsto \frac{\partial f}{\partial X} \frac{\partial g}{\partial Y}-\frac{\partial f}{\partial Y} \frac{\partial g}{\partial X}
$$

Now $\mathrm{S}^{n}(E) \cong k^{n+1}$ and $\mathrm{S}^{n-1}(E) \cong k^{n}$, so we have the required isomorphism $\mathrm{S}^{2} k^{n} \cong \wedge^{2} k^{n+1}$.


Action of $\mathrm{GL}_{2}(\mathbb{C})$ on $\langle X, Y\rangle$

$$
\begin{array}{rl}
X & Y \\
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) & \longmapsto\left(\begin{array}{ccc}
X^{2} \wedge X Y & Y^{2} \wedge X Y & X^{2} \wedge Y^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \gamma \beta^{2} \\
\alpha \gamma^{2} \delta-\alpha \gamma^{2} \delta & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \delta^{2} \\
\alpha^{2} \gamma \delta-\gamma^{2} \alpha \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
X^{2} \wedge X Y & Y^{2} \wedge X Y \\
X^{2} \wedge Y^{2} \\
& =\left(\begin{array}{ccc}
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \nu \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
X^{2} \wedge X Y & X Y \wedge Y^{2} \\
X^{2} \wedge Y^{2} \\
& =\left(\begin{array}{ccc}
\alpha^{2} & -\beta^{2} & 2 \alpha \beta \\
-\gamma^{2} & \delta^{2} & -2 \gamma \delta \\
\alpha \gamma & -\beta \delta & (\alpha \delta+\beta \gamma)
\end{array}\right)
\end{array}
$$

## Action of $\mathrm{GL}_{2}(\mathbb{C})$ on $\langle X, Y\rangle$

$$
\begin{aligned}
& X \quad Y \\
& \left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto\left(\begin{array}{ccc}
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \gamma \beta^{2} \\
\alpha \gamma^{2} \delta-\alpha \gamma^{2} \delta & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\gamma^{2} \alpha \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
& X^{2} \wedge X Y \quad Y^{2} \wedge X Y \quad X^{2} \wedge Y^{2} \\
& =\left(\begin{array}{ccc}
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
& X^{2} \wedge X Y \quad X Y \wedge Y^{2} \quad X^{2} \wedge Y^{2} \\
& =\left(\begin{array}{ccc}
\alpha^{2} & -\beta^{2} & 2 \alpha \beta \\
-\gamma^{2} & \delta^{2} & -2 \gamma \delta \\
\alpha \gamma & -\beta \delta & (\alpha \delta+\beta \gamma)
\end{array}\right)
\end{aligned}
$$

- This is not the matrix for $\mathrm{Sym}^{2} \mathbb{C}^{2}$.
- Instead it is (after a sign flip), the matrix for the dual

$$
\operatorname{Sym}_{2} E=\langle X \otimes X, Y \otimes Y, X \otimes Y+Y \otimes X\rangle
$$

- So what we've shown is that $\bigwedge^{2} \operatorname{Sym}^{2} \mathbb{C}^{2} \cong \operatorname{Sym}_{2} \mathbb{C}^{2}$.


## Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)
Let $F$ be any field. Let $E \cong F^{2}$ be the natural representation of $\mathrm{SL}_{2}(F)$. There is an isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\operatorname{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

## Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)
Let $F$ be any field. Let $E \cong F^{2}$ be the natural representation of $\mathrm{SL}_{2}(F)$. There is an isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Outline of proof.

- Guess the right map. For instance, for $r=2$ and $\ell=3$, two cases are
$\rightarrow X^{2} Y \otimes X Y^{2}+X Y^{2} \otimes X^{2} Y \mapsto X^{3} Y \wedge X Y^{3}+X^{2} Y^{2} \wedge X^{2} Y^{2}$
- $X^{2} Y \otimes X^{2} Y \mapsto X^{3} Y \wedge X^{2} Y^{2}$.


## Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)
Let $F$ be any field. Let $E \cong F^{2}$ be the natural representation of $\mathrm{SL}_{2}(F)$. There is an isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Outline of proof.

- Guess the right map. For instance, for $r=2$ and $\ell=3$, two cases are
$\wedge^{2} Y \otimes X Y^{2}+X Y^{2} \otimes X^{2} Y \mapsto X^{3} Y \wedge X Y^{3}+X^{2} Y^{2} \wedge X^{2} Y^{2}$ $>X^{2} Y \otimes X^{2} Y \mapsto X^{3} Y \wedge X^{2} Y^{2}$.
- Prove it is injective. (Not obvious.)


## Duality and the modular Wronskian isomorphism

## Theorem (McDowell-W 2020)

Let $F$ be any field. Let $E \cong F^{2}$ be the natural representation of $\mathrm{SL}_{2}(F)$. There is an isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Outline of proof.

- Guess the right map. For instance, for $r=2$ and $\ell=3$, two cases are
$>X^{2} Y \otimes X Y^{2}+X Y^{2} \otimes X^{2} Y \mapsto X^{3} Y \wedge X Y^{3}+X^{2} Y^{2} \wedge X^{2} Y^{2}$ $>X^{2} Y \otimes X^{2} Y \mapsto X^{3} Y \wedge X^{2} Y^{2}$.
- Prove it is injective. (Not obvious.)
- Prove is is $\mathrm{SL}_{2}(F)$-equivariant. (Highly not obvious.)


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \bigwedge^{2} E$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \Lambda^{3} E \oplus$ ?


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$


## §2 Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$


## §2 Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of GL(E); take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of GL(E); take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x^{\sqrt{\frac{1}{2}} 1}+x^{\frac{1}{3}} 11+x^{\frac{1}{2}} 2
$$

## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$


## $\S 2$ Plethysm and polynomial representations of $\mathrm{GL}_{d}(\mathbb{C})$

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
$-s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x^{\begin{array}{|c|c|}
\hline \frac{1}{2} \\
\end{array}+x^{\frac{1}{3}} 11}+x^{\frac{1}{2}}+2
$$

- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$
- Plethysm (from Greek $\pi \lambda \eta \theta v \sigma \mu \circ \sigma):\left(s_{\nu} \circ s_{\mu}\right)\left(x_{1}, x_{2}, \ldots\right)$


## $\S 3$ Plethysms for $\mathrm{SL}_{2}(\mathbb{C})$

Theorem
Let $\lambda$ and $\mu$ be partitions and let $\ell, m \in \mathbb{N}$. The following are eqv:
(i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(\mathbb{C})} \nabla^{\mu} \mathrm{Sym}^{m} E$;
(ii) $\left(s_{\lambda} \circ s_{(\ell)}\right)\left(q, q^{-1}\right)=\left(s_{\mu} \circ s_{(m)}\right)\left(q, q^{-1}\right)$;
(iii) $s_{\lambda}\left(q^{\ell}, q^{\ell-2}, \ldots, q^{-\ell}\right)=s_{\mu}\left(q^{m}, q^{m-2}, \ldots, q^{-m}\right)$;

## $\S 3$ Plethysms for $\mathrm{SL}_{2}(\mathbb{C})$

## Theorem

Let $\lambda$ and $\mu$ be partitions and let $\ell, m \in \mathbb{N}$. The following are eqv:
(i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \cong_{\mathrm{SL}_{2}(\mathbb{C})} \nabla^{\mu} \mathrm{Sym}^{m} E$;
(ii) $\left(s_{\lambda} \circ s_{(\ell)}\right)\left(q, q^{-1}\right)=\left(s_{\mu} \circ s_{(m)}\right)\left(q, q^{-1}\right)$;
(iii) $s_{\lambda}\left(q^{\ell}, q^{\ell-2}, \ldots, q^{-\ell}\right)=s_{\mu}\left(q^{m}, q^{m-2}, \ldots, q^{-m}\right)$;
(iv) $C(\lambda)+\ell+1 / H(\lambda)=C(\mu)+m+1 / H(\mu)$
where / is difference of multisets (negative multiplicities okay) and

- $C(\lambda)=\{j-i:(i, j) \in[\lambda]\}$ is the multiset of contents of $\lambda$;
- $H(\lambda)=\left\{h_{(i, j)}:(i, j) \in[\lambda]\right\}$ is the multiset of hook lengths of $\lambda$.

Part (iv) is a corollary of Stanley's Hook Content Formula.
Example. Part (iv) implies the Wronksian isomorphism (over $\mathbb{C}$ ).

## Plethystic complement isomorphism for $\mathrm{SL}_{2}(\mathbb{C})$

Let $\lambda$ be a partition contained in a box with $d$ rows and $s$ columns.
Let $\lambda^{\bullet d}$ be its complement. For example if $s=5, d=4$ then

$$
(4,3,3,1)^{\bullet 4}=(4,2,2,1)
$$



## Plethystic complement isomorphism for $\mathrm{SL}_{2}(\mathbb{C})$

Let $\lambda$ be a partition contained in a box with $d$ rows and $s$ columns. Let $\lambda^{\bullet d}$ be its complement. For example if $s=5, d=4$ then

$$
(4,3,3,1)^{\bullet 4}=(4,2,2,1)
$$



Theorem (King 1985 [if], Paget-W 2019 [only if])
Let $E$ be the natural representation of $\mathrm{SL}_{2}(\mathbb{C})$. Let $\lambda$ have at most d parts. Then

$$
\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda \bullet d} \operatorname{Sym}^{\ell} E
$$

if and only if $\lambda=\lambda^{\bullet d}$ or $\ell=d-1$.

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 / H(\lambda)=C\left(\lambda^{\bullet 4}\right)+4 / H\left(\lambda^{\bullet 4}\right)
$$



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$




## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

| $C(\lambda)+4$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) .
$$

| $C(\lambda)+4$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| 3 |  |  |  |  |
| 2 | 3 |  |  |  |
| $\mathbf{1}$ |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) .
$$

$$
C(\lambda)+4
$$

| 4 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 |  |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) .
$$

$$
C(\lambda)+4
$$

| 4 | 5 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) .
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) .
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |



## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |


| $H(\lambda)$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 4 | 1 |  |
|  | 3 | 2 |  |  |
| 4 | 2 | 1 |  |  |
| 1 |  |  |  |  |

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |


|  | 5 | 4 | 1 |  |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 2 |  |  |
| 4 | 2 | 1 |  |  |
| 1 |  |  |  |  |

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | 5 | 6 | 7 |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | 5 |  |  |
| 2 | 3 | 4 |  |  |
| 1 |  |  |  |  |


| 7 | 5 | 4 | 1 |  |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 2 |  |  |
| 4 | 2 | 1 |  |  |
| 1 |  |  |  |  |

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{1}$ | 3 |
| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 2 | 4 |
| $\mathbf{1}$ | $\mathbf{1}$ | 2 | $\mathbf{5}$ | $\mathbf{7}$ |
| $H\left(\lambda^{\bullet}\right)$ |  |  |  |  |


| $H(\lambda)$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 5 | 4 | 1 |  |
| 5 | 3 | 2 |  |  |
| 4 | 2 | 1 |  |  |
| 1 |  |  |  |  |

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| 4 | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{1}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 3 | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{1}$ | 3 |  |
| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 2 | 4 |  |
| $\mathbf{1}$ | $\mathbf{1}$ | 2 | 5 | 7 |  |
| $H\left(\lambda^{\bullet 4}\right)$ |  |  |  |  |  |

$H(\lambda)$

| 7 | 5 | 4 | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 2 | $\mathbf{3}$ | $\mathbf{2}$ |
| 4 | 2 | 1 | 4 | 3 |
| $\mathbf{1}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ |
| $C\left(\lambda^{\bullet 4}\right)+4$ |  |  |  |  |

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
\begin{array}{ll}
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda) . \\
C(\lambda)+4 & H(\lambda)
\end{array}
$$

| $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 1 | 3 |
| $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 2 | 4 |
| $\mathbf{1}$ | $\mathbf{1}$ | 2 | 5 | 7 |
| $H\left(\lambda^{\bullet}\right)$ |  |  |  |  |


| 7 | 5 | 4 | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 2 | 3 | 2 |
| 4 | 2 | 1 | 4 | 3 |
| $\mathbf{1}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ |
| $C\left(\lambda^{\bullet 4}\right)+4$ |  |  |  |  |

Either way all numbers in a rectangle are $\left\{1^{4}, 2^{3}, 3^{3}, 4^{4}, 5^{3}, 6,7^{2}\right\}$

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$

$$
C(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)
$$

$$
C(\lambda)+4
$$

| $4_{0}$ | $5_{1}$ | $6_{2}$ | $7_{3}$ | $1_{0}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $3_{0}$ | $4_{1}$ | $5_{2}$ | $1_{0}$ | $3_{1}$ |  |
| $2_{0}$ | $3_{1}$ | $4_{2}$ | $2_{0}$ | $4_{1}$ |  |
| $1_{0}$ | $1_{0}$ | $2_{1}$ | $5_{2}$ | $7_{3}$ |  |
| $H\left(\lambda^{\bullet 4}\right)$ |  |  |  |  |  |

Either way all numbers in a rectangle are $\left\{1^{4}, 2^{3}, 3^{3}, 4^{4}, 5^{3}, 6,7^{2}\right\}$ Using a theorem of Bessenrodt: stronger version with arm lengths

## Stanley's HCF for the complement isomorphism

For example, using a rectangle with 4 rows and 5 columns,

$$
\nabla^{(4,3,3,1)} \operatorname{Sym}^{3} E \cong \nabla^{(4,2,2,1)} \operatorname{Sym}^{3} E
$$

By Stanley's Hook Content Formula with $\lambda=(4,3,3,1), \lambda^{\bullet 4}=(4,2,2,1)$
$c(\lambda)+4 \cup H\left(\lambda^{\bullet 4}\right)=C\left(\lambda^{\bullet 4}\right) \cup H(\lambda)$.

| $4_{0}$ | $5_{1}$ | $6_{2}$ | $7_{3}$ | $1_{0}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $3_{0}$ | $4_{1}$ | $5_{2}$ | $1_{0}$ | $3_{1}$ |  |
| $2_{0}$ | $3_{1}$ | $4_{2}$ | $2_{0}$ | $4_{1}$ |  |
| $1_{0}$ | $1_{0}$ | $2_{1}$ | $5_{2}$ | $7_{3}$ |  |
| $H\left(\lambda^{\bullet 4}\right)$ |  |  |  |  |  |$\quad$| $7_{3}$ | $5_{2}$ | $4_{1}$ | $1_{0}$ | $1_{0}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $5_{2}$ | $3_{1}$ | $2_{0}$ | $3_{1}$ | $2_{0}$ |  |
| $4_{2}$ | $2_{1}$ | $1_{0}$ | $4_{1}$ | $3_{0}$ |  |
| $1_{0}$ | $7_{3}$ | $6_{2}$ | $5_{1}$ | $4_{0}$ |  |
| $C\left(\lambda^{\bullet 4}\right)+4$ |  |  |  |  |  |

Either way all numbers in a rectangle are $\left\{1^{4}, 2^{3}, 3^{3}, 4^{4}, 5^{3}, 6,7^{2}\right\}$ Using a theorem of Bessenrodt: stronger version with arm lengths Problem
Interpret this using Jack symmetric functions and prove a stronger symmetric functions identity

## §4 Modular plethysms

Theorem (McDowell-W 2020)

- Let $G$ be a group;
- Let $V$ be a d-dimensional representation of $G$ over an arbitrary field;
- Let $s \in \mathbb{N}$, and let $\lambda$ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- Recall that $\lambda^{\bullet d}$ denotes the complement of $\lambda$ in the $d \times s$ rectangle.
There is an isomorphism

$$
\nabla^{\lambda} V \cong \nabla^{\lambda^{\bullet d}} V^{\star} \otimes(\operatorname{det} V)^{\otimes s}
$$

## §4 Modular plethysms

Theorem (McDowell-W 2020)

- Let $G$ be a group;
- Let $V$ be a d-dimensional representation of $G$ over an arbitrary field;
- Let $s \in \mathbb{N}$, and let $\lambda$ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- Recall that $\lambda^{\bullet d}$ denotes the complement of $\lambda$ in the $d \times s$ rectangle.
There is an isomorphism

$$
\nabla^{\lambda} V \cong \nabla^{\lambda^{\bullet d}} V^{\star} \otimes(\operatorname{det} V)^{\otimes s}
$$

This generalizes the complementary partition isomorphism from $\mathrm{SL}_{2}(\mathbb{C})$ to arbitrary fields and groups.

One idea in proof: $\Lambda^{\lambda^{\prime}} V \cong \Lambda^{\left(\lambda^{\bullet 0}\right)^{\prime}} V$ up to determinants.
We show this isomorphism is compatible with the quotient map $\bigwedge^{\mu^{\prime}} V \rightarrow \nabla^{\mu} V$ using generators and relations.


## §4 Modular plethysms

Theorem (McDowell-W 2020)

- Let $G$ be a group;
- Let $V$ be a d-dimensional representation of $G$ over an arbitrary field;
- Let $s \in \mathbb{N}$, and let $\lambda$ be a partition with $\ell(\lambda) \leq d$ and first part at most s.
- Recall that $\lambda^{\bullet d}$ denotes the complement of $\lambda$ in the $d \times s$ rectangle.
There is an isomorphism

$$
\nabla^{\lambda} V \cong \nabla^{\lambda^{\bullet d}} V^{\star} \otimes(\operatorname{det} V)^{\otimes s}
$$

This generalizes the complementary partition isomorphism to arbitrary fields and groups.
Corollary (Hermite 1854 over $\mathbb{C}$, McDowell-W 2020)
Let $m, \ell \in \mathbb{N}$ and let $E$ be the natural 2-dimensional representation of $\mathrm{GL}_{2}(F)$. Then $\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \cong \operatorname{Sym}^{\ell} \operatorname{Sym}_{m} E$.

## Obstructions to modular plethysms

## Theorem (King 1985)

Let $E$ be the natural representation of $\mathrm{SL}_{2}(\mathbb{C})$. For a large class of partitions $\lambda$, there is an isomorphism

$$
\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \cong_{\operatorname{SL}(E)} \nabla^{\lambda^{\prime}} \operatorname{Sym}^{\ell+\ell\left(\lambda^{\prime}\right)-\ell(\lambda)} E .
$$

- In particular, King's result holds when $\lambda$ is a hook; that is $\lambda=\left(a+1,1^{b}\right)$ for some $a, b \in \mathbb{N}_{0}$.
- In Paget-W 2019 we showed that King's Theorem gives all plethystic isomorphisms relating $\nabla^{\lambda} \operatorname{Sym}^{\ell} E$ and $\nabla^{\lambda^{\prime}} \operatorname{Sym}^{m} E$.
- King's result was (independently) reproved by Cagliero and Penazzi 2016.
- The special case of King's Theorem when $\lambda$ is a rectangle is an instance of a theorem of Manivel 2007.


## Obstruction to a modular generalization

Let $F$ be an infinite field of prime characteristic $p$ and let $E$ be the natural representation of $\mathrm{SL}_{2}(F)$.
Theorem (McDowell-W 2020)
There exist infinitely many pairs $(a, b)$ such that, provided $e$ is sufficiently large, the eight representations of $\mathrm{SL}_{2}(F)$ obtained from $\nabla^{\left(a+1,1^{b}\right)}$ Sym $^{p^{e}+b} E$ by

- Replacing $\nabla$ with $\Delta$ (duality)
- Replacing $\left(a+1,1^{b}\right)$ with $\left(b+1,1^{a}\right)$ and $p^{e}+b$ with $p^{e}+a$ (King conjugation);
- Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality);
are all non-isomorphic.


## Obstruction to a modular generalization

Let $F$ be an infinite field of prime characteristic $p$ and let $E$ be the natural representation of $\mathrm{SL}_{2}(F)$.
Theorem (McDowell-W 2020)
There exist infinitely many pairs $(a, b)$ such that, provided $e$ is sufficiently large, the eight representations of $\mathrm{SL}_{2}(F)$ obtained from $\nabla^{\left(a+1,1^{b}\right)}$ Sym $^{p^{e}+b} E$ by

- Replacing $\nabla$ with $\Delta$ (duality)
- Replacing $\left(a+1,1^{b}\right)$ with $\left(b+1,1^{a}\right)$ and $p^{e}+b$ with $p^{e}+a$ (King conjugation);
- Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$ (another duality);
are all non-isomorphic.


## Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_{2}(\mathbb{C})$ have modular analogues?

## Further work

## Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_{2}(\mathbb{C})$ have modular analogues?

Equivalences between two-row non-hook partitions: $a \geq b \geq 2$
(c) $(a, b)_{\ell} \sim_{\ell}(a, b)$
(d) $(a, a)_{c+1} \sim_{a+1}(c, c) \quad$ (rectangular, Theorem 1.6), $c \geq 2$
(e) $(a, b)_{2} \sim_{2}(a, a-b) \quad$ (complement, Theorem 1.5), $a-b \geq 2$
(f) $\quad(2 \ell, \ell+2)_{\ell} \sim_{\ell+2}(2 \ell-2, \ell-2) \quad \ell \geq 4$

## Further work

## Problem

What plethystic isomorphisms of representations of $\mathrm{SL}_{2}(\mathbb{C})$ have modular analogues?
Equivalences between two-row non-hook partitions: $a \geq b \geq 2$

| (c) $(a, b)_{\ell} \sim_{\ell}(a, b)$ |  |
| :--- | :--- |
| (d) $(a, a)_{c+1} \sim_{a+1}(c, c)$ | (rectangular, Theorem 1.6), $c \geq 2$ |
| (e) $(a, b)_{2} \sim_{2}(a, a-b)$ | (complement, Theorem 1.5), $a-b \geq 2$ |
| (f) $(2 \ell, \ell+2)_{\ell} \sim_{\ell+2}(2 \ell-2, \ell-2)$ | $\ell \geq 4$ |

## Problem

What other combinatorial identities have modular lifts?
For example, MacMahon's identity enumerating plane partitions in the $a \times b \times c$ box

$$
\sum_{\pi \in \mathcal{P} \mathcal{P}(a, b, c)} q^{|\pi|}=\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{q^{i+j+k-1}-1}{q^{i+j+k-2}-1}
$$

is equivalent to $\nabla^{\left(a^{b}\right)} \operatorname{Sym}^{b+c-1} E \cong_{\mathrm{SL}_{2}(\mathbb{C})} \nabla^{\left(b^{a}\right)} \operatorname{Sym}^{a+c-1} E$, and similar isomorphisms with all other permutations of $a, b, c$.

