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Outline

I §1 Motivation: Examples of plethysms

I §2 Main result: Minimal and maximal constituents of sµ ◦ sν



§1 Polynomial representations of GL(V )
Let V be a finite-dimensional C-vector space.

I The natural representation of GL(V ) is irreducible.

I V ⊗ V ∼= Sym2V ⊕ ∧2V .
I V⊗3 ∼= Sym3V ⊕ ∧3V ⊕ . . .

I u = (v1 ∧ v2)⊗ v1 ∈ ∧2V ⊗ V is highest weight, weight (2, 1).
I Why highest weight? Check u killed by Lie algebra action of

e ∈ gl(V ), defined by e(v2) = e1, e(vi ) = 0 if i 6= 2:

eu = (ev1 ∧ v2)⊗ v1 + (v1 ∧ ev2)⊗ v1 + (v1 ∧ v2)⊗ ev1

= 0 + 0 + 0.

I Two isomorphic complementary submodules are generated by
(v1 ⊗ v2 − v2 ⊗ v1)⊗ v1 and v1 ⊗ (v1 ⊗ v2 − v2 ⊗ v1),

Generally

V⊗r ∼=
⊕

λ∈Par(r)

(∆λV )⊕dλ

where ∆λV is the unique irreducible representation of GL(V ) of
highest weight λ. For instance SymnV = ∆(n)V , ∧nV = ∆(1n)V .
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Plethysm: Composing polynomial representations
Consider Sym2(Sym2V )→ Sym4V : (uv)(u′v ′) 7→ uvu′v ′.

I Kernel is ∆(2,2)V . Why? (v1v1)(v2v2)− (v1v2)(v1v2) is
highest weight, of weight (2, 2).

I Sym2(Sym2V ) ∼= ∆(2,2)V ⊕∆(4)V .
I Take dimV = 2. Geometrically:

I Sym2V = 〈v1v1, 2v1v2, v2v2〉C
I O(Sym2V ) = C[Y11,Y12,Y22]
I let C be the image of the squaring map V ↪→ Sym2V ,

αv1 + βv2 7→ α2v1v1 + 2αβv1v2 + β2v2v2

I C = Zeros(Y11Y22 − Y 2
12); the GL(V )-submodule of

O(Sym2V ) generated by Y11Y22 − Y 2
12 is ∆(2,2)V .

Next step up: f ∈ Sym4(Sym2V ) = O(Sym2V )4 may
I Vanish doubly on C: (Y11Y22 − Y 2

12)2

I Vanish singly on C: Y 2
11(Y11Y22 − Y 2

12)
I Such functions are in kernel of Sym4(Sym2V )→ Sym8V , so

Sym4(Sym2V ) ∼= ∆(4,4)V ⊕∆(6,2)V ⊕∆(8)V .
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Plethysm: Symmetric groups and wreath products

Take dimV ≥ 4. So S4 ≤ GL(V ): (13) 7→


· · 1 ·
· 1 · ·
1 · · ·
· · · 1

.

I Weight space (1, 1, 1, 1) inside Sym2(Sym2V ) is

〈(v1v2)(v3v4), (v1v3)(v2v4), (v1v4)(v2v3)〉.
I Identify (v1v2)(v3v4) with the set partition

{
{1, 2}, {3, 4}

}
.

I Stabiliser S2 o S2 = (S2 × S2) o S2 = 〈(12), (34)〉o 〈(13)(24)〉.
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Foulkes’ Conjecture
Let Ω(mn) be the set of all set partitions of {1, 2, . . . ,mn} into n
sets each of size m.

Conjecture (Foulkes)

If m ≤ n then there is an injective map of Smn-representations
〈Ω(nm)〉C → 〈Ω(mn)〉C.

Equivalently, if φ(m
n) is the character of 〈Ω(mn)〉C, then

〈φ(nm), χλ〉 ≤ 〈φ(mn), χλ〉 for all λ ∈ Par(mn).

φ(n
2) = χ(2n) + χ(2n−2,2) + χ(2n−4,4) + · · ·

φ(2
n) =

∑
λ∈Par(n)

χ2λ

I Hence FC holds when m = 2.
I These are the only multiplicity-free Foulkes characters for

mn ≥ 18 (Saxl, 1980).
I Giannelli, MW 2014: results on decomposition numbers of

symmetric groups obtained from local structure of 〈Ω(2n)〉
over fields of prime characteristic.
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Decomposition Numbers: 3-block of S12 with core (3, 1, 1)

34 Matthew Fayers

A.7 The block of kS13 with 3-core (3, 1) (h3, 5, 3i-notation)

(1
2,

1)
(9
,4

)

(9
,2

2 )
(7
,4
,2

)
(6
,5
,2

)
(6
,4
,3

)
(6
,4
,2
,1

)

(6
,3
,2
,1

2 )

(5
,4
,2
,1

2 )

(4
2 ,

22 ,
1)

(12, 1) = h2i 1
(9, 4) = h2, 2i 1 1

(9, 22) = h2, 3i 2 1 1
(7, 4, 2) = h3i 1 1 1 1

(6, 5, 2) = h3, 2i 1 1
(6, 4, 3) = h2, 2, 3i 1 1 1 1

(6, 4, 2, 1) = h2, 2, 2i 1 1 1 1 1 1 1
(6, 3, 2, 12) = h1, 2i 2 1 1 1 1 1

(5, 4, 2, 12) = h1i 1 1 1 1 1 1 1
(42 , 22 , 1) = h3, 1i 2 1 1 1 1 1 1

(9, 14) = h2, 1i 1
(6, 4, 13) = h1, 2, 2i 1
(6, 23 , 1) = h1, 2, 3i 2 1 1

(6, 22 , 13) = h2, 3, 3i 1 1
(6, 17) = h1, 1, 2i 1

(42 , 2, 13) = h3, 3i 1 1 1 1 1 1
(34 , 1) = h1, 3i 1 1 1 1

(32 , 2, 15) = h1, 1i 1 1 1 1
(3, 25) = h1, 3, 3i 1 1

(3, 23 , 14) = h1, 1, 3i 1 1
(3, 22 , 16) = h3, 3, 3i 1 1

(3, 110) = h1, 1, 1i 1

A.8 The block of kS14 with 3-core (3, 12) (h4, 5, 2i-notation)

(1
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12 )

(12, 12) = h2i 1
(9, 4, 1) = h2, 2i 1 1
(9, 3, 2) = h2, 1i 2 1 1

(8, 4, 2) = h1i 1 1 1 1
(62 , 2) = h1, 2i 1 1

(6, 44) = h1, 2, 2i 1 1 1 1
(6, 4, 22) = h2, 2, 2i 1 1 1 1 1 1 1

(6, 3, 22 , 1) = h1, 1, 2i 2 1 1 1 1
(5, 4, 22 , 1) = h1, 1i 1 1 1 1 1 1 1 1

(42 , 22 , 12) = h3i 1 1 1 1 1 1 1
(9, 15) = h2, 3i 1

(6, 4, 14) = h2, 2, 3i 1
(6, 3, 2, 13) = h1, 2, 3i 1 1 1 1

(6, 23 , 12) = h3, 2i 1
(6, 18) = h2, 3, 3i 1

(5, 4, 2, 13) = h1, 3i 2 1 1 1 1
(34 , 12) = h3, 1i 1 1 1 1

(32 , 24) = h1, 1, 3i 1 1
(32 , 22 , 14) = h1, 1, 1i 1 1 1 1

(32 , 2, 16) = h1, 3, 3i 2 1 1
(3, 23 , 15) = h3, 3i 1 1
(3, 111) = h3, 3, 3i 1
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Decomposition Numbers: 3-block of S12 with core (3, 1, 1)

34 Matthew Fayers

A.7 The block of kS13 with 3-core (3, 1) (h3, 5, 3i-notation)

(1
2,

1)
(9
,4

)

(9
,2

2 )
(7
,4
,2

)
(6
,5
,2

)
(6
,4
,3

)
(6
,4
,2
,1

)

(6
,3
,2
,1

2 )

(5
,4
,2
,1

2 )

(4
2 ,

22 ,
1)

(12, 1) = h2i 1
(9, 4) = h2, 2i 1 1

(9, 22) = h2, 3i 2 1 1
(7, 4, 2) = h3i 1 1 1 1

(6, 5, 2) = h3, 2i 1 1
(6, 4, 3) = h2, 2, 3i 1 1 1 1

(6, 4, 2, 1) = h2, 2, 2i 1 1 1 1 1 1 1
(6, 3, 2, 12) = h1, 2i 2 1 1 1 1 1

(5, 4, 2, 12) = h1i 1 1 1 1 1 1 1
(42 , 22 , 1) = h3, 1i 2 1 1 1 1 1 1

(9, 14) = h2, 1i 1
(6, 4, 13) = h1, 2, 2i 1
(6, 23 , 1) = h1, 2, 3i 2 1 1

(6, 22 , 13) = h2, 3, 3i 1 1
(6, 17) = h1, 1, 2i 1

(42 , 2, 13) = h3, 3i 1 1 1 1 1 1
(34 , 1) = h1, 3i 1 1 1 1
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(3, 22 , 16) = h3, 3, 3i 1 1

(3, 110) = h1, 1, 1i 1

A.8 The block of kS14 with 3-core (3, 12) (h4, 5, 2i-notation)
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Foulkes’ Conjecture and Howe’s Conjecture

Let Ω(mn) be the set of all set partitions of {1, 2, . . . ,mn} into n
sets each of size m.

Conjecture (Howe 1987)

The CSmn-homomorphism θ(m
n) : 〈Ω(nm)〉C → 〈Ω(mn)〉C defined by

{A1, . . . ,Am} 7→
∑
{B1, . . . ,Bn},

where the sum is over all {B1, . . . ,Bn} ∈ Ω(mn) such that
|Ai ∩ Bj | = 1 for all i and j , is injective.

I Dent, Siemons 2000: FC is true for m = 3.

I McKay 2007: if θ(m
n) is injective then so is θ(m

n′ ) for all
n′ ≥ n. Hence HC and FC hold for m = 4.

I Müller, Neunhöffer 2005: θ(5
5) is not injective.

I Cheung, Ikenmeyer, Mkrtchyan 2015: θ(5
6) is injective, hence

FC is true for m = 5.
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Open problem

Problem
Decompose φ(3

n) into irreducible characters of S3n.

Equivalently, decompose Symn(Sym3V ) into irreducible
representations of GL(V ).

It is not hard to show that

φ(3
n)
y
S3n−1

=
(
φ(3

n−1) × 1S2
)xS3n−1 .

Computational evidence suggests that this property, together with
〈φ(3n), 1S3n〉 = 1, determines φ(3

n) uniquely.
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Foulkes’ Conjecture: computational results
I Müller, Neunhöffer 2005: FC is true if m + n ≤ 17.
I Evseev, Paget, MW 2014: FC is true if m + n ≤ 19.
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I Müller, Neunhöffer 2005: FC is true if m + n ≤ 17.
I Evseev, Paget, MW 2014: FC is true if m + n ≤ 19.

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16



Foulkes’ Conjecture: computational results
I Müller, Neunhöffer 2005: FC is true if m + n ≤ 17.
I Evseev, Paget, MW 2014: FC is true if m + n ≤ 19.

0

1

2

3

4

5

6

7



Plethysm: Symmetric polynomials.
Suppose dimV = d .

I A basis of weight vectors for Sym2V is

v1v1, v1v2, v2v2, v1v3, . . . vdvd
x21 x1x2, x22 , x1x3, . . . x2d

I The formal character of Sym2V is

s(2)(x1, . . . , xd) = x21 + x1x2 + x22 + x1x3 + · · ·+ x2d .

Formal characters are symmetric polynomials.

I The formal character h of Sym2(Sym2V ) is obtained by
evaluating s(2) at the monomials x21 , x1x2, . . .

(v1v1)(v1v1), (v1v1)(v1v2), (v1v2)(v1v2), (v1v1)(v2v2), . . .
x21x

2
1 x21x1x2, x1x2x1x2 x21x

2
2 , . . .

h(x1, . . . , xd) = x41 + x31x2 + 2x21x
2
2 + 2x21x2x3 + 3x1x2x3x4

=
(
x41 + x31x2 + x21x

2
2 + x21x2x3 + x1x2x3x4 + · · ·

)
+
(
x21x

2
2 + x21x2x3 + 2x1x2x3x4 + · · ·

)
= s(4)(x1, . . . , xd) + s(2,2)(x1, . . . , xd)
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πληθυσµoσ: Stanley’s Problem 9
Let f and g be symmetric polynomials. Assume g has coefficients
in N0 when expressed in the monomial basis. The plethysm f ◦ g is
defined by evaluating f at the monomials of g .

I The formal character of ∆ν(∆µV ) is sν ◦ sµ.

I The corresponding character of Smn is(
(̃χµ)×nInfSmoSnSn

χν
)xSmn

SmoSn

Problem (Weak Foulkes’ Conjecture)

Show that if m ≤ n then s(n) ◦ s(m) − s(m) ◦ s(n) has non-negative
coefficients.

Equivalently, Sm o Sn has at least as many orbits as Sn o Sm on the
coset space Smn/Sλ1 × Sλ2 × · · · , for each λ ∈ Par(mn).

Problem (Stanley, 2000)

Let µ ∈ Par(m), ν ∈ Par(n), λ ∈ Par(mn). Find a combinatorial
interpretation of the coefficient of sλ in sν ◦ sµ.
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Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .

I . . . which is the number of 3-regular graphs:



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
1

•
2

•
3

•
4

•
5

•
6

−→
•
•



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
1

•
2

•
3

•
4

•
5

•
6

−→
•
•



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
1

•
2

•
3

•
4

•
5

•
6

−→
•
•

•
1

•
2

•
4

•
3

•
5

•
6

−→
•
•



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
1

•
2

•
3

•
4

•
5

•
6

−→
•
•

•
1

•
2

•
4

•
3

•
5

•
6

−→
•
•



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
• • •

−→



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
• • •

−→



Plethysms and enumeration

Theorem (Read 1959)

〈s(2m) ◦ s(3), s(3m) ◦ s(2)〉 is the number of 3-regular graphs (with
loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

I s(2m) ◦ s(3) is the cycle index of S6m acting on Ω(32m).

I s(3m) ◦ s(2) is the cycle index of S6m acting on Ω(23m)
.

I The inner product is the number of orbits of S6m on
Ω(32m) × Ω(23m) . . .

I . . . which is the number of orbits of S3 o S2m on Ω(23m) . . .
I . . . which is the number of 3-regular graphs:

•
• • •

−→
•
1
•
2
•
3

•
4
•
5
•
6

•
7

•8
•
9

•
10

• 11
•

12



§2: Minimal and maximal constituents of plethysms

Let λ, λ? ∈ Par(r). We say λ dominates λ?, and write λD λ?, if

λ1 + · · ·+ λj ≥ λ?1 + · · ·+ λ?j .

for all j . For example

I (4, 2, 2) D (3, 3, 1, 1),

I (4, 1, 1) and (3, 3) are incomparable.

Our main theorem gives a combinatorial characterization of all
maximal and minimal partitions λ in the dominance order on
Par(mn) such that sλ has non-zero coefficient in sν ◦ sµ.

This solves a special case of Stanley’s Problem 9.
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Special case µ = (m) for minimals
Let A = {a1, . . . , am} and B = {b1, . . . , bm} be m-subsets of N,
written so that a1 < . . . < am and b1 < . . . < bm. We say that A
majorizes B, and write A � B, if

a1 ≤ b1, . . . , am ≤ bm.

{1, 2, 3}

{1, 2, 4}

{1, 3, 4} {1, 2, 5}

{2, 3, 4} {1, 3, 5} {1, 2, 6}

{2, 3, 5} {1, 4, 5} {1, 3, 6} {1, 2, 7}

I A closed set family of size r is a family P of m-subsets of N
such that |P| = r and if B ∈ P and A � B then A ∈ P.
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Special case µ = (m) for minimals

I A closed set family of size r is a family P of m-subsets of N
such that |P| = r and if B ∈ P and A � B then A ∈ P.

I A closed set family tuple of size ν is a tuple (P1, . . . ,Pe)
where Pj is a closed set family of size νj for each j .

I The weight of (P1, . . . ,Pe) is the partition λ such that each
i ∈ N appears in exactly λi sets in the Pj .

I The type of (P1, . . . ,Pe) is the conjugate partition λ′.
I For example,({

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}
}
,
{
{1, 2, 3}

})
is a closed set family tuple of size (3, 1), weight (4, 3, 3, 2) and
type (4, 4, 3, 1).

Theorem (Paget, MW, 2014)

Let m be odd. The minimal partitions λ such that sλ has non-zero
coefficient in sν ◦ s(m) are precisely the minimal types of the closed
set family tuples of size ν.
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Special case ν = (n) for minimals
I A µ-tableau is conjugate-semistandard if its rows are strictly

increasing and its columns are non-decreasing. When µ = (m)
such tableaux correspond to m-subsets: {1, 3, 4} ↔ 1 3 4 .

I The majorization order generalizes to a partial order on
conjugate-semistandard µ-tableaux.

I We define closed µ-tableau families and their weights and
types analogously.

For example{
1 2
1

, 1 2
2

, 1 3
1

}
is a closed (2, 1)-tableau family of size 3, weight (5, 3, 1) and
type (3, 2, 2, 1, 1).

Theorem (Paget, MW, 2016)

Let m be odd and let µ ∈ Par(n). The minimal partitions λ such
that sλ has non-zero coefficient in s(n) ◦ sµ are precisely the
minimal types of the closed µ-tableau families of size n.

This determines all minimal λ such that ∆λV appears in the
coordinate ring of ∆µV .
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