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Consider Sym?(Sym?V) — Sym*V: (uv)(v'v') = uwvu'v'.
» Kernel is A2V Why? (viv1)(vawva) — (vivo)(viwo) is
highest weight, of weight (2, 2).
» Sym?(Sym?V) = ARV g AMYV.
> Take dim V = 2. Geometrically:
> Sym2V = (v1v1,2v1vo, vova)c
> O(Sym*V) = C[Y11, Y12, Y22
> let C be the image of the squaring map V < Sym?V,

avi + Bva — &?vivi + 2aBviva + B2vavs

» C = Zeros(Y11 Y22 — Y53); the GL(V)-submodule of
O(Sym?V) generated by Y11 Ya — Y3 is ARV,
Next step up: f € Sym*(Sym?V) = O(Sym?V); may
» Vanish doubly on C: (Y11 Y22 — Y122)2
» Vanish singly on C: Y& (Y11 Y22 — Y3)
» Such functions are in kernel of Sym*(Sym?V) — Sym®V, so

Sym*(Sym?V) = Ay ¢ A2y ¢ AG) Y,
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Plethysm: Symmetric groups and wreath products
1

Take dim V > 4. So S, < GL(V): (1234) — | 1

Weight space (1,1,1,1) inside Sym?(Sym?V) is

v

((viva)(vava), (vivs)(vava), (viva)(vavs)).

Identify (vyv2)(vsva) with the set partition {{1,2},{3,4}}.
Stabiliser S5 = (S2 x S2) @ S = ((12), (34)) x ((13)(24)).

v

v

1 2 3 4

Weight space is permutation module CT_Ss;sQ
Character x(22) + () corresponding to A(22) ¢ AM).

v

v
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Foulkes' Conjecture
Let Q(™") be the set of all set partitions of {1,2,...,mn} into n
sets each of size m.
Conjecture (Foulkes)
If m < n then there is an injective map of Sp,,-representations
(@CM)e - ().

Equivalently, if ¢(™") is the character of (Q(™"))¢, then
(™) x M) < (¢(M") x*) for all X € Par(mn).

$7) — 1 (2n) | (2n-22) |\ (2-44)

#2) = Z N

A€Par(n)

» Hence FC holds when m = 2.

> These are the only multiplicity-free Foulkes characters for
mn > 18 (Saxl|, 1980).

» Giannelli, MW 2014: results on decomposition numbers of
symmetric groups obtained from local structure of (Q(2")
over fields of prime characteristic.
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Foulkes' Conjecture and Howe's Conjecture
Let Q(™") be the set of all set partitions of {1,2,..., mn} into n
sets each of size m.
Conjecture (Howe 1987)
The CS,,n,-homomorphism 8(™") - (")) — (Q(M")) - defined by

{Al,...,Am} — Z{Bl,~~-78n}7

where the sum is over all {Bs,...,B,} € QM) such that
|AiN Bj| =1 for all i and j, is injective.
» Dent, Siemons 2000: FC is true for m = 3.

» McKay 2007: if 6(™") is injective then so is 9("’"’) for all
n’ > n. Hence HC and FC hold for m = 4.

» Miiller, Neunhéffer 2005: 0(5°) is not injective.

» Cheung, lkenmeyer, Mkrtchyan 2015: #5°) is injective, hence
FC is true for m = 5.
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Open problem

Problem
Decompose (;5(3") into irreducible characters of S3,.

Equivalently, decompose Sym”(Sym3V) into irreducible
representations of GL(V/).

It is not hard to show that

o s

3n—1

— (¢(3”71) X 152)T53"’1.

Computational evidence suggests that this property, together with
(pB") 15, ) = 1, determines ¢G") uniquely.
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(vivi)(viv1), (vivi)(viv2), (vive)(vive), (vivi)(vav2),
X12X12 X12X1X2, X1 X2X1 X2 X12X22,

4 2.2 2
h(X1, ... Xd) = X§ + xix2 + 2x2 x5 + 2xxox3 + 3X1X0X3%4
4 2.2 .2
= (Xl + x13X2 + X1X5 + X{XoXx3 + X1 XoX3Xg + - -+ )
+ (X12x22 + X12X2X3 + 2x1X0X3X4 + + - )

= 5(4)(X1, R ,Xd) + 5(272)(X1, RN ,Xd)
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coefficients.

Equivalently, S, 1S, has at least as many orbits as 5,1 S,, on the
coset space Spmn/Sy, X Sy, X -+, for each A € Par(mn).
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in Ng when expressed in the monomial basis. The plethysm f o g is
defined by evaluating f at the monomials of g.
» The formal character of AY(A*V)is s, 0s,,.
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Problem (Weak Foulkes" Conjecture)
Show that if m < n then s(p) © S(m) — S(m) © S(n) has non-negative
coefficients.
Equivalently, S, 1S, has at least as many orbits as 5,1 S,, on the
coset space Spmn/Sy, X Sy, X -+, for each A € Par(mn).
Problem (Stanley, 2000)

Let p € Par(m), v € Par(n), A € Par(mn). Find a combinatorial
interpretation of the coefficient of sy in s, 0s),.
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Let A\, \* € Par(r). We say A dominates \*, and write A > \*, if
ALt A AT+ AT

for all j. For example
> (4,2,2)>(3,3,1,1),
> (4,1,1) and (3, 3) are incomparable.

Our main theorem gives a combinatorial characterization of all
maximal and minimal partitions A in the dominance order on
Par(mn) such that sy has non-zero coefficient in s, o's,.

This solves a special case of Stanley's Problem 9.
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» The type of (Pi,...,Pe) is the conjugate partition ).

» For example,

({{1,2,3},{1,2,4},{1,3,4}},{{1,2,3}})
is a closed set family tuple of size (3,1), weight (4,3, 3,2) and
type (4,4,3,1).

Theorem (Paget, MW, 2014)

Let m be odd. The minimal partitions A such that sy has non-zero
coefficient in s, o s, are precisely the minimal types of the closed
set family tuples of size v.
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> The majorization order generalizes to a partial order on
conjugate-semistandard pu-tableaux.

» We define closed p-tableau families and their weights and
types analogously.
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> A p-tableau is conjugate-semistandard if its rows are strictly
increasing and its columns are non-decreasing. When p = (m)
such tableaux correspond to m-subsets: {1,3,4} < [1]3]4]

» The majorization order generalizes to a partial order on
conjugate-semistandard pu-tableaux.

» We define closed p-tableau families and their weights and
types analogously. For example

{12| 1[2] 13|}
1 7 [2] 7 [1]

is a closed (2, 1)—tab_leau famTy of size 3, weight (5,3,1) and
type (3,2,2,1,1).

Theorem (Paget, MW, 2016)

Let m be odd and let i € Par(n). The minimal partitions A such
that s\ has non-zero coefficient in s o s, are precisely the
minimal types of the closed i-tableau families of size n.

This determines all minimal X such that AV appears in the
coordinate ring of A*V.



Application to invariants of Riemann curvature tensor

L
mathoverflow auestions | Tags [ users | aiges | uf

A question on invariant theory of GL,(C).

Let p denote the irreducible algebraic representation of GL, (C) with the highest weight
2,2,0,...,0).

2
1 2 n-2
Let k < n/2 be a non-negative integer. How to decompose into irreducible representations the
representation Sym*(p)?

More specifically, | am interested whether Symk(p) contains the representation with the highest
1 weight (2,...,2,0,...,0), and if yes, whether the mutiplicity is equal to one.
2k n=2k

A a side remark, the representation p has a geometric interpretation important for me: it is the
space of curvature tensors, namely the curvature tensor of any Riemannian metric on R” lies in p.

theory thy dg.dif ial-g y | rtrep ion-theory ‘
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Application to invariants of Riemann curvature

The plethysm Sym®p contains the ireducible representation with highest weight
2, ...,2,0, ...,0) exactly once. It looks like a tricky problem to say much about its other
irreducible constituents.

Let A* denote the Schur functor corresponding to the partition 4, and let E be an n-
dimensional complex vector space. Using symmetric polynomials (or other methods) one finds

Sym?(Sym?E) = A®?E @ Sym*E.

Therefore
k
Sym*Sym*Sym’E = Y’ Sym'(A?E) ® Sym*~"(Sym*E).
=0

The irreducible representations contained in the rth summand are labelled by partitions with at
most 2r + (k — r) = k + r parts. So to show that Sym*“(AG?(E)) contains AZE, it suffices
to show that AZ*E appears in Sym*Sym?Sym?E.

Let U = Sym?E. There is a canonical surjection
Sym*(Sym?U) - Sym*U.

given by mapping (u;u}) .. () € Sym*(Sym*U) to uy ] ... ugl, € Sym*U. Therefore
Sym*(Sym?U) contains Sym*U = Sym?(Sym?E). It is well known that

Sym*(Sym’E) = Y, A%(E)
7
where the sum is over all partitions 4 of 2k and 2(4;, ..., 4,) = (241, ..., 24,,). Taking
4= (1%*) we see that A@*E appears.

It remains to show that the multiplicity of A?*E in Symk(A®?E) is 1. We work over C, so
there is a chain of inclusions

Sym(ACD(E)) € SymH(Sym2E ® Sym2E) C (Sym2E)®%.

By the Littlewood-Richardson rule (or the easier Young's rule), the multiplicity of ADE inthe
right-hand side is 1.

share cite edit delete flag answered Oct 4 '12 at 0:42

Mark Wildon
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This is nice. — Dan Petersen Oct 412 at 6:55
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