Minimal and maximal constituents of plethysms of Schur functions

Mark Wildon (joint work with Rowena Paget)

Algebraic Combinatorics and Group Actions Herstmonceux, 11 July 2016

Outline

- ▶ §1 Motivation: Examples of plethysms
- ▶ §2 Main result: Minimal and maximal constituents of $s_\mu \circ s_\nu$

Let V be a finite-dimensional \mathbb{C} -vector space.

• The natural representation of GL(V) is irreducible.

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\blacktriangleright V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$

$$\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \ldots$$

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$

$$\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \ldots$$

▶ $u = (v_1 \land v_2) \otimes v_1 \in \land^2 V \otimes V$ is highest weight, weight (2,1).

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \ldots$
 - $u = (v_1 \wedge v_2) \otimes v_1 \in \wedge^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\blacktriangleright V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \ldots$
 - $u = (v_1 \wedge v_2) \otimes v_1 \in \wedge^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

$$eu = (ev_1 \wedge v_2) \otimes v_1 + (v_1 \wedge ev_2) \otimes v_1 + (v_1 \wedge v_2) \otimes ev_1$$

= 0 + 0 + 0.

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\blacktriangleright V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \ldots$
 - ▶ $u = (v_1 \land v_2) \otimes v_1 \in \land^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

 $eu = (ev_1 \wedge v_2) \otimes v_1 + (v_1 \wedge ev_2) \otimes v_1 + (v_1 \wedge v_2) \otimes ev_1$ = 0 + 0 + 0.

• Two isomorphic complementary submodules are generated by $(v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_1$ and $v_1 \otimes (v_1 \otimes v_2 - v_2 \otimes v_1)$,

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
 - ▶ $u = (v_1 \land v_2) \otimes v_1 \in \land^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

 $eu = (ev_1 \wedge v_2) \otimes v_1 + (v_1 \wedge ev_2) \otimes v_1 + (v_1 \wedge v_2) \otimes ev_1$ = 0 + 0 + 0.

• Two isomorphic complementary submodules are generated by $(v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_1$ and $v_1 \otimes (v_1 \otimes v_2 - v_2 \otimes v_1)$,

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^3 V \oplus \wedge^3 V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
 - $u = (v_1 \wedge v_2) \otimes v_1 \in \wedge^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

$$eu = (ev_1 \wedge v_2) \otimes v_1 + (v_1 \wedge ev_2) \otimes v_1 + (v_1 \wedge v_2) \otimes ev_1$$

= 0 + 0 + 0.

• Two isomorphic complementary submodules are generated by $(v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_1$ and $v_1 \otimes (v_1 \otimes v_2 - v_2 \otimes v_1)$,

Generally

$$V^{\otimes r}\cong igoplus_{\lambda\in \operatorname{Par}(r)}(\Delta^{\lambda}V)^{\oplus d_{\lambda}}$$

where $\Delta^{\lambda} V$ is the unique irreducible representation of GL(V) of highest weight λ .

Let V be a finite-dimensional \mathbb{C} -vector space.

- The natural representation of GL(V) is irreducible.
- $\lor V \otimes V \cong \operatorname{Sym}^2 V \oplus \wedge^2 V.$
- $\blacktriangleright V^{\otimes 3} \cong \operatorname{Sym}^{3} V \oplus \wedge^{3} V \oplus \Delta^{(2,1)} V \oplus \Delta^{(2,1)} V$
 - $u = (v_1 \wedge v_2) \otimes v_1 \in \wedge^2 V \otimes V$ is highest weight, weight (2,1).
 - Why highest weight? Check u killed by Lie algebra action of e ∈ gl(V), defined by e(v₂) = e₁, e(v_i) = 0 if i ≠ 2:

$$eu = (ev_1 \wedge v_2) \otimes v_1 + (v_1 \wedge ev_2) \otimes v_1 + (v_1 \wedge v_2) \otimes ev_1$$

= 0 + 0 + 0.

• Two isomorphic complementary submodules are generated by $(v_1 \otimes v_2 - v_2 \otimes v_1) \otimes v_1$ and $v_1 \otimes (v_1 \otimes v_2 - v_2 \otimes v_1)$,

Generally

$$V^{\otimes r} \cong igoplus_{\lambda \in \operatorname{Par}(r)} (\Delta^{\lambda} V)^{\oplus d_{\lambda}}$$

where $\Delta^{\lambda} V$ is the unique irreducible representation of $\operatorname{GL}(V)$ of highest weight λ . For instance $\operatorname{Sym}^{n} V = \Delta^{(n)} V$, $\wedge^{n} V = \Delta^{(1^{n})} V$.

• Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) - (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).

• Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) - (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).

•
$$\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$$

• Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) - (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).

•
$$\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$$

• Take dim V = 2. Geometrically:

► Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) - (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).

•
$$\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$$

• Take dim V = 2. Geometrically:

•
$$\operatorname{Sym}^2 V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$$

Plethysm: Composing polynomial representations Consider $\text{Sym}^2(\text{Sym}^2 V) \rightarrow \text{Sym}^4 V$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$
- Take dim V = 2. Geometrically:
 - Sym² $V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\mathcal{O}(\operatorname{Sym}^2 V) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$

- Kernel is Δ^(2,2)V. Why? (v₁v₁)(v₂v₂) − (v₁v₂)(v₁v₂) is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$
- Take dim V = 2. Geometrically:
 - Sym² $V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\mathcal{O}(\operatorname{Sym}^2 V) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let \mathcal{C} be the image of the squaring map $V \hookrightarrow \mathrm{Sym}^2 V$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

- ► Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$
- Take dim V = 2. Geometrically:
 - Sym² $V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\bullet \mathcal{O}(\operatorname{Sym}^2 V) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let \mathcal{C} be the image of the squaring map $V \hookrightarrow \mathrm{Sym}^2 V$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \text{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the GL(V)-submodule of $\mathcal{O}(\text{Sym}^2 V)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\Delta^{(2,2)}V$.

Plethysm: Composing polynomial representations Consider $\text{Sym}^2(\text{Sym}^2V) \rightarrow \text{Sym}^4V$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\Delta^{(2,2)}V$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$
- Take dim V = 2. Geometrically:
 - $\mathsf{Sym}^2 V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\mathcal{O}(\operatorname{Sym}^2 V) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - ▶ let C be the image of the squaring map $V \hookrightarrow Sym^2 V$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \text{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the GL(V)-submodule of $\mathcal{O}(\text{Sym}^2 V)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\Delta^{(2,2)}V$.

Next step up: $f \in \operatorname{Sym}^4(\operatorname{Sym}^2 V) = \mathcal{O}(\operatorname{Sym}^2 V)_4$ may

- Vanish doubly on C: $(Y_{11}Y_{22} Y_{12}^2)^2$
- Vanish singly on C: $Y_{11}^2(Y_{11}Y_{22} Y_{12}^2)$

Plethysm: Composing polynomial representations Consider $\text{Sym}^2(\text{Sym}^2 V) \rightarrow \text{Sym}^4 V$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is Δ^(2,2)V. Why? (v₁v₁)(v₂v₂) − (v₁v₂)(v₁v₂) is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 V) \cong \Delta^{(2,2)} V \oplus \Delta^{(4)} V.$
- Take dim V = 2. Geometrically:
 - Sym² $V = \langle v_1 v_1, 2v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\mathcal{O}(\operatorname{Sym}^2 V) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - ▶ let C be the image of the squaring map $V \hookrightarrow Sym^2 V$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \operatorname{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the $\operatorname{GL}(V)$ -submodule of $\mathcal{O}(\operatorname{Sym}^2 V)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\Delta^{(2,2)}V$.

Next step up: $f \in \operatorname{Sym}^4(\operatorname{Sym}^2 V) = \mathcal{O}(\operatorname{Sym}^2 V)_4$ may

- Vanish doubly on C: $(Y_{11}Y_{22} Y_{12}^2)^2$
- Vanish singly on C: $Y_{11}^2(Y_{11}Y_{22} Y_{12}^2)$
- ► Such functions are in kernel of $\operatorname{Sym}^4(\operatorname{Sym}^2 V) \to \operatorname{Sym}^8 V$, so $\operatorname{Sym}^4(\operatorname{Sym}^2 V) \cong \Delta^{(4,4)} V \oplus \Delta^{(6,2)} V \oplus \Delta^{(8)} V.$

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le \operatorname{GL}(V)$: (13) $\mapsto \begin{pmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$.

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le GL(V)$: $(1234) \mapsto \begin{pmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}$. • Weight space (1, 1, 1, 1) inside $Sym^2(Sym^2V)$ is

 $\langle (v_1v_2)(v_3v_4), (v_1v_3)(v_2v_4), (v_1v_4)(v_2v_3) \rangle.$

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le GL(V)$: $(1234) \mapsto \begin{pmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{pmatrix}$. • Weight space (1, 1, 1, 1) inside $Sym^2(Sym^2V)$ is $\langle (v_1v_2)(v_3v_4), (v_1v_3)(v_2v_4), (v_1v_4)(v_2v_3) \rangle$.

• Identify $(v_1v_2)(v_3v_4)$ with the set partition $\{\{1,2\},\{3,4\}\}$.

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le GL(V)$: (1234) $\mapsto \begin{pmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & - & \cdot \\ \cdot & 1 & - & \cdot \\ \cdot & \cdot & 1 & - \end{pmatrix}$.

▶ Weight space (1, 1, 1, 1) inside Sym²(Sym²V) is ⟨(v₁v₂)(v₃v₄), (v₁v₃)(v₂v₄), (v₁v₄)(v₂v₃)⟩.

- Identify $(v_1v_2)(v_3v_4)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- ▶ Stabiliser $S_2 \wr S_2 = (S_2 \times S_2) \rtimes S_2 = \langle (12), (34) \rangle \rtimes \langle (13)(24) \rangle$.

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le GL(V)$: (1234) $\mapsto \begin{pmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & - & \cdot \\ \cdot & 1 & - & \cdot \\ \cdot & \cdot & 1 & - \end{pmatrix}$.

► Weight space (1, 1, 1, 1) inside Sym²(Sym²V) is ((v₁v₂)(v₃v₄), (v₁v₃)(v₂v₄), (v₁v₄)(v₂v₃)).

- Identify $(v_1v_2)(v_3v_4)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- ▶ Stabiliser $S_2 \wr S_2 = (S_2 \times S_2) \rtimes S_2 = \langle (12), (34) \rangle \rtimes \langle (13)(24) \rangle$.

• Weight space is permutation module $\mathbb{C} \uparrow_{S_2 \wr S_2}^{S_4}$

Plethysm: Symmetric groups and wreath products Take dim $V \ge 4$. So $S_4 \le GL(V)$: (1234) $\mapsto \begin{pmatrix} \cdot & \cdot & -1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \end{pmatrix}$.

► Weight space (1, 1, 1, 1) inside Sym²(Sym²V) is ((v₁v₂)(v₃v₄), (v₁v₃)(v₂v₄), (v₁v₄)(v₂v₃)).

- Identify $(v_1v_2)(v_3v_4)$ with the set partition $\{\{1,2\},\{3,4\}\}$.
- ▶ Stabiliser $S_2 \wr S_2 = (S_2 \times S_2) \rtimes S_2 = \langle (12), (34) \rangle \rtimes \langle (13)(24) \rangle$.

• Weight space is permutation module $\mathbb{C} \uparrow_{S_2 \setminus S_2}^{S_4}$

• Character $\chi^{(2,2)} + \chi^{(4)}$, corresponding to $\Delta^{(2,2)} \oplus \Delta^{(4)}$.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Equivalently, there is an injective map of GL(V)-representations

 $\operatorname{Sym}^m(\operatorname{Sym}^n V) \to \operatorname{Sym}^n(\operatorname{Sym}^m V).$

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Equivalently, if $\phi^{(m^n)}$ is the character of $\langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$, then $\langle \phi^{(n^m)}, \chi^{\lambda} \rangle \leq \langle \phi^{(m^n)}, \chi^{\lambda} \rangle$ for all $\lambda \in \operatorname{Par}(mn)$.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Equivalently, if $\phi^{(m^n)}$ is the character of $\langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$, then $\langle \phi^{(n^m)}, \chi^{\lambda} \rangle \leq \langle \phi^{(m^n)}, \chi^{\lambda} \rangle$ for all $\lambda \in \operatorname{Par}(mn)$. $\phi^{(n^2)} = \chi^{(2n)} + \chi^{(2n-2,2)} + \chi^{(2n-4,4)} + \cdots$ $\phi^{(2^n)} = \sum_{\lambda \in \operatorname{Par}(n)} \chi^{2\lambda}$

• Hence FC holds when m = 2.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Equivalently, if
$$\phi^{(m^n)}$$
 is the character of $\langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$, then
 $\langle \phi^{(n^m)}, \chi^{\lambda} \rangle \leq \langle \phi^{(m^n)}, \chi^{\lambda} \rangle$ for all $\lambda \in \operatorname{Par}(mn)$.
 $\phi^{(n^2)} = \chi^{(2n)} + \chi^{(2n-2,2)} + \chi^{(2n-4,4)} + \cdots$
 $\phi^{(2^n)} = \sum_{\lambda \in \operatorname{Par}(n)} \chi^{2\lambda}$

• Hence FC holds when m = 2.

► These are the only multiplicity-free Foulkes characters for mn ≥ 18 (Sa×l, 1980).

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Foulkes)

If $m \leq n$ then there is an injective map of S_{mn} -representations $\langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$.

Equivalently, if
$$\phi^{(m^n)}$$
 is the character of $\langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$, then
 $\langle \phi^{(n^m)}, \chi^{\lambda} \rangle \leq \langle \phi^{(m^n)}, \chi^{\lambda} \rangle$ for all $\lambda \in \operatorname{Par}(mn)$.
 $\phi^{(n^2)} = \chi^{(2n)} + \chi^{(2n-2,2)} + \chi^{(2n-4,4)} + \cdots$
 $\phi^{(2^n)} = \sum_{\lambda \in \operatorname{Par}(n)} \chi^{2\lambda}$

• Hence FC holds when m = 2.

- ► These are the only multiplicity-free Foulkes characters for mn ≥ 18 (Saxl, 1980).
- Giannelli, MW 2014: results on decomposition numbers of symmetric groups obtained from local structure of (Ω^(2ⁿ)) over fields of prime characteristic.

Decomposition Numbers: 3-block of S_{12} with core (3, 1, 1)

Decomposition Numbers: 3-block of S_{12} with core (3, 1, 1)

Decomposition Numbers: 3-block of S_{12} with core (3, 1, 1)

Decomposition Numbers: 3-block of S_{12} with core (3, 1, 1)

Decomposition Numbers: 3-block of S_{12} with core (3, 1, 1)

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Howe 1987)

The $\mathbb{C}S_{mn}$ -homomorphism $\theta^{(m^n)}: \langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$ defined by

$$\{A_1,\ldots,A_m\}\mapsto \sum\{B_1,\ldots,B_n\},\$$

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Howe 1987)

The $\mathbb{C}S_{mn}$ -homomorphism $\theta^{(m^n)}: \langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$ defined by

$$\{A_1,\ldots,A_m\}\mapsto \sum\{B_1,\ldots,B_n\},\$$

where the sum is over all $\{B_1, \ldots, B_n\} \in \Omega^{(m^n)}$ such that $|A_i \cap B_j| = 1$ for all *i* and *j*, is injective.

• Dent, Siemons 2000: FC is true for m = 3.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Howe 1987)

The $\mathbb{C}S_{mn}$ -homomorphism $\theta^{(m^n)}: \langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$ defined by

$$\{A_1,\ldots,A_m\}\mapsto \sum\{B_1,\ldots,B_n\},\$$

- Dent, Siemons 2000: FC is true for m = 3.
- McKay 2007: if $\theta^{(m^n)}$ is injective then so is $\theta^{(m^{n'})}$ for all $n' \ge n$. Hence HC and FC hold for m = 4.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Howe 1987)

The $\mathbb{C}S_{mn}$ -homomorphism $\theta^{(m^n)}: \langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$ defined by

$$\{A_1,\ldots,A_m\}\mapsto \sum\{B_1,\ldots,B_n\},\$$

- Dent, Siemons 2000: FC is true for m = 3.
- McKay 2007: if $\theta^{(m^n)}$ is injective then so is $\theta^{(m^{n'})}$ for all $n' \ge n$. Hence HC and FC hold for m = 4.
- Müller, Neunhöffer 2005: $\theta^{(5^5)}$ is not injective.

Let $\Omega^{(m^n)}$ be the set of all set partitions of $\{1, 2, ..., mn\}$ into n sets each of size m.

Conjecture (Howe 1987)

The $\mathbb{C}S_{mn}$ -homomorphism $\theta^{(m^n)}: \langle \Omega^{(n^m)} \rangle_{\mathbb{C}} \to \langle \Omega^{(m^n)} \rangle_{\mathbb{C}}$ defined by

$$\{A_1,\ldots,A_m\}\mapsto \sum\{B_1,\ldots,B_n\},\$$

- Dent, Siemons 2000: FC is true for m = 3.
- McKay 2007: if $\theta^{(m^n)}$ is injective then so is $\theta^{(m^{n'})}$ for all $n' \ge n$. Hence HC and FC hold for m = 4.
- Müller, Neunhöffer 2005: $\theta^{(5^5)}$ is not injective.
- Cheung, Ikenmeyer, Mkrtchyan 2015: $\theta^{(5^6)}$ is injective, hence FC is true for m = 5.

Open problem

Problem Decompose $\phi^{(3^n)}$ into irreducible characters of S_{3n} .

Equivalently, decompose $\operatorname{Sym}^{n}(\operatorname{Sym}^{3} V)$ into irreducible representations of $\operatorname{GL}(V)$.

Open problem

Problem Decompose $\phi^{(3^n)}$ into irreducible characters of S_{3n} .

Equivalently, decompose $\operatorname{Sym}^{n}(\operatorname{Sym}^{3} V)$ into irreducible representations of $\operatorname{GL}(V)$.

It is not hard to show that

$$\phi^{(3^n)} \downarrow_{S_{3n-1}} = (\phi^{(3^{n-1})} \times 1_{S_2}) \uparrow^{S_{3n-1}}$$

Computational evidence suggests that this property, together with $\langle \phi^{(3^n)}, 1_{S_{3n}} \rangle = 1$, determines $\phi^{(3^n)}$ uniquely.

Foulkes' Conjecture: computational results

- Müller, Neunhöffer 2005: FC is true if $m + n \le 17$.
- Evseev, Paget, MW 2014: FC is true if $m + n \le 19$.

Foulkes' Conjecture: computational results

- ▶ Müller, Neunhöffer 2005: FC is true if $m + n \le 17$.
- Evseev, Paget, MW 2014: FC is true if $m + n \le 19$.

Foulkes' Conjecture: computational results

- ▶ Müller, Neunhöffer 2005: FC is true if $m + n \le 17$.
- Evseev, Paget, MW 2014: FC is true if $m + n \le 19$.

Plethysm: Symmetric polynomials.

Suppose dim V = d.

• A basis of weight vectors for $Sym^2 V$ is

• The formal character of $Sym^2 V$ is

$$s_{(2)}(x_1,\ldots,x_d) = x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + \cdots + x_d^2.$$

Formal characters are symmetric polynomials.

Plethysm: Symmetric polynomials.

Suppose dim V = d.

• A basis of weight vectors for $Sym^2 V$ is

• The formal character of $Sym^2 V$ is

$$s_{(2)}(x_1,\ldots,x_d) = x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + \cdots + x_d^2$$

Formal characters are symmetric polynomials.

► The formal character *h* of $\text{Sym}^2(\text{Sym}^2 V)$ is obtained by evaluating $s_{(2)}$ at the monomials $x_1^2, x_1 x_2, \dots$ $(v_1 v_1)(v_1 v_1), (v_1 v_1)(v_1 v_2), (v_1 v_2)(v_1 v_2), (v_1 v_1)(v_2 v_2), \dots$ $x_1^2 x_1^2 x_1^2 x_1^2 x_1 x_2, x_1 x_2 x_1 x_2 x_1^2 x_2^2, \dots$ Plethysm: Symmetric polynomials.

Suppose dim V = d.

• A basis of weight vectors for $Sym^2 V$ is

• The formal character of $Sym^2 V$ is

$$s_{(2)}(x_1,\ldots,x_d) = x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + \cdots + x_d^2$$

Formal characters are symmetric polynomials.

► The formal character *h* of Sym²(Sym²V) is obtained by evaluating $s_{(2)}$ at the monomials x_1^2, x_1x_2, \dots $(v_1v_1)(v_1v_1), (v_1v_1)(v_1v_2), (v_1v_2)(v_1v_2), (v_1v_1)(v_2v_2), \dots$ $x_1^2x_1^2 \qquad x_1^2x_1x_2, \qquad x_1x_2x_1x_2 \qquad x_1^2x_2^2, \qquad \dots$ $h(x_1, \dots, x_d) = x_1^4 + x_1^3x_2 + 2x_1^2x_2^2 + 2x_1^2x_2x_3 + 3x_1x_2x_3x_4$ $= (x_1^4 + x_1^3x_2 + x_1^2x_2^2 + x_1^2x_2x_3 + x_1x_2x_3x_4 + \dots)$ $+ (x_1^2x_2^2 + x_1^2x_2x_3 + 2x_1x_2x_3x_4 + \dots)$ $= s_{(4)}(x_1, \dots, x_d) + s_{(2,2)}(x_1, \dots, x_d)$

$\pi\lambda\eta\theta\upsilon\sigma\mu\sigma\sigma$: Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_0 when expressed in the monomial basis. The *plethysm* $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}(\Delta^{\mu}V)$ is $s_{\nu} \circ s_{\mu}$.
- ▶ The corresponding character of S_{mn} is

$$(\widetilde{(\chi^{\mu})^{\times n}}\mathrm{Inf}_{S_n}^{S_m\wr S_n}\chi^{\nu})\uparrow_{S_m\wr S_n}^{S_{mn}}$$

$\pi\lambda\eta\theta\upsilon\sigma\mu\sigma\sigma$: Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_0 when expressed in the monomial basis. The *plethysm* $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}(\Delta^{\mu}V)$ is $s_{\nu} \circ s_{\mu}$.
- The corresponding character of S_{mn} is

$$(\widetilde{(\chi^{\mu})^{\times n}} \mathrm{Inf}_{S_n}^{S_m \wr S_n} \chi^{\nu}) \uparrow_{S_m \wr S_n}^{S_{mn}}$$

Problem (Weak Foulkes' Conjecture)

Show that if $m \le n$ then $s_{(n)} \circ s_{(m)} - s_{(m)} \circ s_{(n)}$ has non-negative coefficients.

Equivalently, $S_m \wr S_n$ has at least as many orbits as $S_n \wr S_m$ on the coset space $S_{mn}/S_{\lambda_1} \times S_{\lambda_2} \times \cdots$, for each $\lambda \in Par(mn)$.

$\pi\lambda\eta\theta\upsilon\sigma\mu\sigma\sigma$: Stanley's Problem 9

Let f and g be symmetric polynomials. Assume g has coefficients in \mathbb{N}_0 when expressed in the monomial basis. The *plethysm* $f \circ g$ is defined by evaluating f at the monomials of g.

- The formal character of $\Delta^{\nu}(\Delta^{\mu}V)$ is $s_{\nu} \circ s_{\mu}$.
- The corresponding character of S_{mn} is

$$(\widetilde{(\chi^{\mu})^{\times n}} \mathrm{Inf}_{S_n}^{S_m \wr S_n} \chi^{\nu}) \uparrow_{S_m \wr S_n}^{S_{mn}}$$

Problem (Weak Foulkes' Conjecture)

Show that if $m \le n$ then $s_{(n)} \circ s_{(m)} - s_{(m)} \circ s_{(n)}$ has non-negative coefficients.

Equivalently, $S_m \wr S_n$ has at least as many orbits as $S_n \wr S_m$ on the coset space $S_{mn}/S_{\lambda_1} \times S_{\lambda_2} \times \cdots$, for each $\lambda \in Par(mn)$.

Problem (Stanley, 2000)

Let $\mu \in Par(m)$, $\nu \in Par(n)$, $\lambda \in Par(mn)$. Find a combinatorial interpretation of the coefficient of s_{λ} in $s_{\nu} \circ s_{\mu}$.

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m})}$.

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m})}$.
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m})}$.
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m})}$.
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...
- ... which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...
-which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...

....which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

Why on earth should this be true?

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...

... which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...
-which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...
-which is the number of 3-regular graphs:

Theorem (Read 1959)

 $\langle s_{(2m)} \circ s_{(3)}, s_{(3m)} \circ s_{(2)} \rangle$ is the number of 3-regular graphs (with loops and multiple edges permitted) on 2m vertices.

- $s_{(2m)} \circ s_{(3)}$ is the cycle index of S_{6m} acting on $\Omega^{(3^{2m})}$.
- $s_{(3m)} \circ s_{(2)}$ is the cycle index of S_{6m} acting on $\Omega^{(2^{3m)}}$
- The inner product is the number of orbits of S_{6m} on $\Omega^{(3^{2m})} \times \Omega^{(2^{3m})} \dots$
- ... which is the number of orbits of $S_3 \wr S_{2m}$ on $\Omega^{(2^{3m})}$...
- ... which is the number of 3-regular graphs:

$\S2$: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \geq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^* + \dots + \lambda_j^*.$$

for all j. For example

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \geq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

• (4,1,1) and (3,3) are incomparable.

§2: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

- ► (4,2,2) ≥ (3,3,1,1),
- (4,1,1) and (3,3) are incomparable.

Our main theorem gives a combinatorial characterization of all maximal and minimal partitions λ in the dominance order on Par(mn) such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{\mu}$.

$\S2$: Minimal and maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

- ► (4, 2, 2) ≥ (3, 3, 1, 1),
- (4,1,1) and (3,3) are incomparable.

Our main theorem gives a combinatorial characterization of all maximal and minimal partitions λ in the dominance order on Par(mn) such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{\mu}$.

This solves a special case of Stanley's Problem 9.

Special case $\mu = (m)$ for minimals

Let $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_m\}$ be *m*-subsets of \mathbb{N} , written so that $a_1 < \ldots < a_m$ and $b_1 < \ldots < b_m$. We say that A *majorizes* B, and write $A \preceq B$, if

$$a_1 \leq b_1, \ldots, a_m \leq b_m.$$

Special case $\mu = (m)$ for minimals

Let $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_m\}$ be *m*-subsets of \mathbb{N} , written so that $a_1 < \ldots < a_m$ and $b_1 < \ldots < b_m$. We say that A *majorizes* B, and write $A \leq B$, if

$$a_1 \leq b_1, \ldots, a_m \leq b_m.$$

A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.
Let $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_m\}$ be *m*-subsets of \mathbb{N} , written so that $a_1 < \ldots < a_m$ and $b_1 < \ldots < b_m$. We say that A *majorizes* B, and write $A \leq B$, if

$$a_1 \leq b_1, \ldots, a_m \leq b_m.$$

A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.

Let $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_m\}$ be *m*-subsets of \mathbb{N} , written so that $a_1 < \ldots < a_m$ and $b_1 < \ldots < b_m$. We say that A *majorizes* B, and write $A \leq B$, if

$$a_1 \leq b_1, \ldots, a_m \leq b_m.$$

A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.

- A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.
- A closed set family tuple of size v is a tuple (P₁,...,P_e) where P_j is a closed set family of size v_j for each j.

- A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.
- A closed set family tuple of size v is a tuple (P₁,...,P_e) where P_j is a closed set family of size v_j for each j.
- The weight of (P₁,..., P_e) is the partition λ such that each i ∈ N appears in exactly λ_i sets in the P_i.

- A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.
- A closed set family tuple of size ν is a tuple (P₁,..., P_e) where P_j is a closed set family of size ν_j for each j.
- ► The weight of $(\mathcal{P}_1, \ldots, \mathcal{P}_e)$ is the partition λ such that each $i \in \mathbb{N}$ appears in exactly λ_i sets in the \mathcal{P}_i .
- The type of $(\mathcal{P}_1, \ldots, \mathcal{P}_e)$ is the conjugate partition λ' .
- For example,

 $\bigl(\bigl\{\{1,2,3\},\{1,2,4\},\{1,3,4\}\bigr\},\bigl\{\{1,2,3\}\bigr\}\bigr)$

is a closed set family tuple of size (3, 1), weight (4, 3, 3, 2) and type (4, 4, 3, 1).

- A closed set family of size r is a family P of m-subsets of N such that |P| = r and if B ∈ P and A ≤ B then A ∈ P.
- A closed set family tuple of size *ν* is a tuple (*P*₁,...,*P_e*) where *P_j* is a closed set family of size *ν_j* for each *j*.
- The weight of $(\mathcal{P}_1, \ldots, \mathcal{P}_e)$ is the partition λ such that each $i \in \mathbb{N}$ appears in exactly λ_i sets in the \mathcal{P}_i .
- The *type* of $(\mathcal{P}_1, \ldots, \mathcal{P}_e)$ is the conjugate partition λ' .
- For example,

 $\bigl(\bigl\{\{1,2,3\},\{1,2,4\},\{1,3,4\}\bigr\},\bigl\{\{1,2,3\}\bigr\}\bigr)$

is a closed set family tuple of size (3, 1), weight (4, 3, 3, 2) and type (4, 4, 3, 1).

Theorem (Paget, MW, 2014)

Let *m* be odd. The minimal partitions λ such that s_{λ} has non-zero coefficient in $s_{\nu} \circ s_{(m)}$ are precisely the minimal types of the closed set family tuples of size ν .

- A μ-tableau is *conjugate-semistandard* if its rows are strictly increasing and its columns are non-decreasing. When μ = (m) such tableaux correspond to m-subsets: {1,3,4} ↔ 1 3 4.
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- We define closed μ-tableau families and their weights and types analogously.

- A μ-tableau is *conjugate-semistandard* if its rows are strictly increasing and its columns are non-decreasing. When μ = (m) such tableaux correspond to m-subsets: {1,3,4} ↔ 1 3 4.
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- ► We define closed µ-tableau families and their weights and types analogously. For example

$$\left\{ \begin{array}{ccc} 1 & 2 \\ 1 & \end{array}, \begin{array}{ccc} 1 & 2 \\ 2 & \end{array}, \begin{array}{ccc} 1 & 3 \\ 1 & \end{array} \right\}$$

is a closed (2, 1)-tableau family of size 3, weight (5, 3, 1) and type (3, 2, 2, 1, 1).

- A μ-tableau is *conjugate-semistandard* if its rows are strictly increasing and its columns are non-decreasing. When μ = (m) such tableaux correspond to m-subsets: {1,3,4} ↔ 1 3 4.
- The majorization order generalizes to a partial order on conjugate-semistandard μ-tableaux.
- ► We define closed µ-tableau families and their weights and types analogously. For example

$$\left\{ \begin{array}{ccc} 1 & 2 \\ 1 & 2 \end{array}, \begin{array}{ccc} 1 & 2 \\ 2 & 1 \end{array} \right\}$$

is a closed (2, 1)-tableau family of size 3, weight (5, 3, 1) and type (3, 2, 2, 1, 1).

Theorem (Paget, MW, 2016)

Let *m* be odd and let $\mu \in Par(n)$. The minimal partitions λ such that s_{λ} has non-zero coefficient in $s_{(n)} \circ s_{\mu}$ are precisely the minimal types of the closed μ -tableau families of size *n*. This determines all minimal λ such that $\Delta^{\lambda}V$ appears in the

This determines all minimal λ such that $\Delta^{\Lambda}V$ appears in t coordinate ring of $\Delta^{\mu}V$.

Application to invariants of Riemann curvature tensor

A question on invariant theory of $GL_n(\mathbb{C})$.

Let ρ denote the irreducible algebraic representation of $GL_n(\mathbb{C})$ with the highest weight $(2, 2, \underbrace{0, \dots, 0}_{n-2})$.

12

숬

1

Let $k \le n/2$ be a non-negative integer. How to decompose into irreducible representations the representation $Sym^k(\rho)$?

More specifically, I am interested whether $Sym^k(\rho)$ contains the representation with the highest weight $(2, \ldots, 2, 0, \ldots, 0)$, and if yes, whether the mutiplicity is equal to one.

2k n-2k

A a side remark, the representation ρ has a geometric interpretation important for me: it is the space of curvature tensors, namely the curvature tensor of any Riemannian metric on \mathbb{R}^n lies in ρ .

invariant-theory classical-invariant-theor	dg.differential-geometry rt.represent	tation-theory plethysm
share cite edit close flag	edited Oct 3 '12 at 19:28	asked Oct 3 '12 at 17:31 Sva 4,239 • 18 • 43

Application to invariants of Riemann curvature tensor

▲ 14

The plethysm Sym^k ρ contains the irreducible representation with highest weight $(2, \ldots, 2, 0, \ldots, 0)$ exactly once. It looks like a tricky problem to say much about its other irreducible constituents

Let Δ^{λ} denote the Schur functor corresponding to the partition λ , and let E be an *n*dimensional complex vector space. Using symmetric polynomials (or other methods) one finds

$$Sym^2(Sym^2E) = \Delta^{(2,2)}E \oplus Sym^4E.$$

Therefore

$$\operatorname{Sym}^k \operatorname{Sym}^2 \operatorname{Sym}^2 E \cong \sum_{r=0}^k \operatorname{Sym}^r(\Delta^{(2,2)}E) \otimes \operatorname{Sym}^{k-r}(\operatorname{Sym}^4 E).$$

The irreducible representations contained in the *r*th summand are labelled by partitions with at most 2r + (k - r) = k + r parts. So to show that $\operatorname{Sym}^k(\Delta^{(2,2)}(E))$ contains $\Delta^{(2^{20})}E$, it suffices to show that $\Delta^{(2^{20})}E$ appears in $\operatorname{Sym}^k\operatorname{Sym}^2E$.

Let $U = \text{Sym}^2 E$. There is a canonical surjection

 $\operatorname{Sym}^{k}(\operatorname{Sym}^{2}U) \rightarrow \operatorname{Sym}^{2k}U.$

given by mapping $(u_1u'_1) \dots (u_ku'_k) \in \operatorname{Sym}^k(\operatorname{Sym}^2 U)$ to $u_1u'_1 \dots u_ku'_k \in \operatorname{Sym}^{2k} U$. Therefore $\operatorname{Sym}^k(\operatorname{Sym}^2 U)$ contains $\operatorname{Sym}^{2k} U = \operatorname{Sym}^{2k}(\operatorname{Sym}^2 E)$. It is well known that

$$\operatorname{Sym}^{2k}(\operatorname{Sym}^{2E}) = \sum_{\lambda} \Delta^{2\lambda}(E)$$

where the sum is over all partitions λ of 2k and $2(\lambda_1, \ldots, \lambda_m) = (2\lambda_1, \ldots, 2\lambda_m)$. Taking $\lambda = (1^{2k})$ we see that $\Delta^{(2^{2k})}E$ appears.

It remains to show that the multiplicity of $\Delta^{(2^{2k})}E$ in $Sym^k(\Delta^{(2,2)}E)$ is 1. We work over \mathbb{C} , so there is a chain of inclusions

$$\operatorname{Sym}^{k}(\Delta^{(2,2)}(E)) \subseteq \operatorname{Sym}^{k}(\operatorname{Sym}^{2}E \otimes \operatorname{Sym}^{2}E) \subseteq (\operatorname{Sym}^{2}E)^{\otimes 2k}.$$

By the Littlewood–Richardson rule (or the easier Young's rule), the multiplicity of $\Delta^{(2^k)}E$ in the right-hand side is 1.

share cite edit delete flag

answered Oct 4 '12 at 0:42

This is nice. - Dan Petersen Oct 4 '12 at 6:55