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§1 Motivation: the Wronskian isomorphism
Let V be a vector space.
> Sym?V = V2 /(veaw-wav:v,wc V)
=(w:veV,weV)
> ANV =V®/(vav:veV)
=(vAw:veV,weV)

Observation. Sym? C" and /\2 C"*1! both have dimension ("erl).

» Proof. If ey,..., e, is a basis for C" then Sym?C”" has basis
6127 ceey erzn €1€2,...,€n—1€n, of size n + (g)

Question. Asked by 8s8m3s xodmsdg on MathOverflow: Is there a
natural isomorphism between these vector spaces?

Answer. Yes! Let E be the 2-dimensional natural representation of
SL2(C). Then Sym"'E is n-dimensional and
2
Sym?Sym" E =S1,(0) /\Sym"E.



Are there nice isomorphisms SZ(k") = A2(k"1)?

Asked 1 year, 1 month ago Active 1 year, 1 month ago Viewed 349 times

A This might be forced to migrate to math.SE but let me still risk it.
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The spaces S%(k") and A2(k™*") from the title have equal dimensions. Is there a natural
isomorphism between them?

share cite edit close flag edited Jan 15 '19 at 10:52 asked Jan 15 '19 at 9:45
830935 X0dMSd)
139k ©3 ©50 @125

Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of SL(E)-
modules /\m S™r=1(E) >~ S™S"(E). Itis easiest to deduce it from the corresponding identity in

symmetric functions (specialized to 1 and g), but it can also be defined explicitly: see for example
Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying S" (E) with the homogeneous polynomial functions on E of degree n, their
definition becomes the map A>S"(E) — S2S"~!(E) defined by

of og Of og
Srer SX oy T arax

Now S"(E) = k"*! and S"~!(E) = k", so we have the required isomorphism SZk" = AZk"+!
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Action of SLy(F) on A\ Sym?E where E = (v, w)

V2 A vw w2 A vw vZ A w?
v w 35 2 26 _ 2 2 2 §—2 2
o B ¥ —oBy  affS—afty 20760 2087
(7 5 > — | —ay?5 4 B8 ad® — Byé? 26726 — 2ay6?
042'76 _ OZ’Y2ﬂ ﬁz’}/(s o a652 012(52 o 52,}/2
VEAvw w2 Avw vZ A w?
a’A —B2A 2a5A
= —72A A —2v6A
ayh  —BOA (ad + By)A
VEAvw w2 Avw vZ A w2
a? -5 2a3
= -2 52 —2v0

ary -5 ad + By
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ary B4 ad + By

» Even after the sign flip,

this is not the matrix for Sym?E.
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Action of SLy(F) on A\ Sym?E where E = (v, w)

VZA vw w2 A vw vZ A w2
C\; VBV a36 — a?Bry aB?6 — af?y 20266 — 2a3%y
(/7 5 > — | —an?5 + 83 add — py62 26726 — 2ay6?
04276 _ OZ’Y2ﬂ ﬁ2’75 o a652 012(52 o 52,}/2
VAV w2 A vw vZ A w?
a’A —B2A 2a5A
= A 52N —27v0A
ayA  —pB5A (ad + By)A
VZAVW  vw A w? vZ A w2
a? 52 2a3
= 72 52 276
ary B4 ad + By

> Even after the sign flip, this is not the matrix for Sym?E. The
matrices are not even conjugate if char F = 2! Instead it is
SLy(F) acting on SymyE = (v v, w @ w,v @ w + w ® v).

> Thus (Sym?E)* =g,(r) A” Sym?E and the duality is critical.



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let M, d € N and let E be the 2-dimensional
natural representation of SLy(F). There is an explicit isomorphism

M
Sym,Sym“E =S1,(F) /\Symd+M_1E.

Here Sym,,V is the invariant subspace of V&M under the position
permutation action of Sy and Sym™ V is the usual quotient of V&M,



Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let M, d € N and let E be the 2-dimensional
natural representation of SLy(F). There is an explicit isomorphism

M
Sym,Sym“E =S1,(F) /\Symd+M_1E.

Here Sym,,V is the invariant subspace of V&M under the position
permutation action of Sy and Sym™ V is the usual quotient of V&M,

As a corollary we obtain a modular version of Hermite Reciprocity.

Corollary (Hermite 1854 over C, McDowell-W 2020)

Let F be any field. Let M, N € N and let E be the natural
2-dimensional representation of GLa(F). Then

Sym,, SymVE =~ SymNSymM E

by an explicit map.



Decategorifying the Wronskian isomorphism

We start with
M

> SymMSyde =SLy(F) /\Symd+M_1E

Taking dimensions, noting that Sym?E has dimension d + 1, gives
d+1 d+ M
> =
u=3")

where (7)) is the number of b-multisets of a set of size a.

But we went down too far! Instead take traces of <(1) 2)

M
> h/\/[(l, q,..., qd) = q_(z)e,w(]_7 q,..., qd+M71)

o [fy

where the sum is over all partitions in a M x d box.



Are there natural isomorphisms S@®D (k") ~ k2 @ W?

Asked 1year, 6 months ago Modified 1 year, 6 months ago  Viewed 340 times

° In this popular 2019 MO question, user 8893 50dmody asked:

7

v

The spaces S?(k") and A2(k"*!) from the title have equal dimensions. Is there a
natural isomorphism between them?

The answer was affirmative: let E = k2, then the Wronskian isomorphism gives an
identification A\"(S™"~1(E)) - S,,(S"(E)) as SL(E)-modules.
(Here, S, (V) = (V®'”)Sm and S™(V) is the symmetric power, as a quotient of yen)

The recent paper Modular plethystic isomorphisms for t If ional linear groups of
McDowell-Wildon contains the proof of this over any field.

My question is in a similar vein. Let V* be the Schur functor of the partition 4, and consider
Ao = (2,1). Then, the SL(E)-character of VA(S™(E)) is simply
m+2
2 )
"]

where the brackets indicate that these are quantum numbers and binomials, so for instance
R21=q+q"

Notice that this holds for any m. This suggests the possibility that there exists a natural
isomorphism V"O(S”‘(E)) = E @ V,, for some "uniformly defined" SL(E)-module V,, of
dimension ["‘;2] .

Is there such a natural isomorphism?

rt. ion-theory | | lie-groups | lie-algeb! binary-quadratic-f Edit tags

Share Cite Edit Follow Close Flag  edited Nov 18, 2023 at 19:28  asked Nov 15, 2023 at 21:45
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SLy(F)-isomorphisms beyond symmetric powers

Theorem (Alvaro L. Martinez-W 2024)

Let F be any field and let E be the natural 2-dimensional
representation of SLo(F). Then

N+1
A(2,1N71)Syde =S1,(F) SymV1E ® /\ Sym9*tE

This decategorifies to 5(271/\/_1)(1, q,...,q9) = Hl] {;\1/:21] .

Theorem (Alvaro Gutiérrez—Alvaro L. Martinez—Michat Szwej-W)
Let F be any field and let E be the natural 2-dimensional
representation of SLy(F). Then

- M—1 M+N—1
AMIT )Syde =91, (F) /\ SymMtN=3E /\ SymM+9-1E.
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§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E) with E=(e1, e, e3) = C3,
o E®E=Sym’E® \’E
e ERE®E~Sym’E® \°E @ VRVE @ VRIE
V@N(E) C Sym?E ® E has basis F(t) a for t semistandard
tableaux of shape (2, 1) with entries from {1, 2, 3}:

F( i b|> :eaeb®ec—eceb®ea€Sym2E®E.

You might also know it as the adjoint representation of the
i . 2
Lie algebra sl3(C)

-

P
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§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E) with E=(e1, e, e3) = C3,
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§2 Polynomial representations and plethysms of Schur functions
» Polynomial representations of GL(E) with E=(e1, e, e3) = C3,
o E®E=Sym’E® \’E
e ERE®E~Sym’E® \°E @ VRVE @ VRIE
Now take E = (e;, e2) = C?
» Tensor product: Sym?E @ Sym?E
> Symmetric power of symmetric power: Sym?Sym?E with basis
(ef)(ef). (ef)(€3), (ef)(ere2), (€3)(€3), (€3)(ere2), (ere)(eren)
» Symmetric functions
o so)(y1y2ys) =yityie+nys+ys+yys+y3
o sy, ys) = y2 +yyyy- : -+yy
= Vit ivstyiyi H2yyayst 3 ystyeyi
> Multiplication: sp)(x1,x2)? = (X + x3 + x1%2)?

> Evaluate s2)(y1, y2, ¥3) at monomials in s2)(x1, x2) to get

s (4,56, xx) = () () +06) (06)+(d) () ++ -+ (xaxe) (xaxe)-

This is the plethysm (s(2) o 52))(x1, X2), obtained by evaluating
S(2) at the monomials x{, x5, x1x2 in s2)(x1, X2).



Combinatorial definition of plethysm
Given a tableau t let x* = x{"x32 ... where a; is the number of
entries of t equal to i. We say t has weight (a1, a2, .. .).
Definition (Schur function)

Let 4 be a partition. The Schur function s, is the generating
function enumerating semistandard tableaux of shape y by weight:

. t
N
teSSYT (1)

For instance

5(2)(X17X27---):X+X+X+X+...

2 2
=X] tx1x2+ X5 +Xx1x3+ -



Combinatorial definition of plethysm
Given a tableau t let x* = x{"x32 ... where a; is the number of
entries of t equal to i. We say t has weight (a1, a2, .. .).
Definition (Schur function)

Let 4 be a partition. The Schur function s, is the generating
function enumerating semistandard tableaux of shape y by weight:

_ t
s= Y
teSSYT (1)
For instance

s2)(x1, X2, - - .) S R ENE TRV EIE TRV EET
:X12—|-X1X2 —|—x22+x1X3+---
Equivalently, s,(x1,...,Xg) is the trace of diag(xy,. .., x,) acting
on V#(E). For instance s(,)(x1, ..., Xg) is the character of Sym"E.
Definition (Plethysm of Schur functions)
Let & and v be partitions. Let SSYT(u) = {t(1),t(2),...}. The
plethystic product of s, and s, is s, 05, = 5, (x!(1) x*(2) ).



Stanley’s Problem 9

By definition of the Hall inner product, (f,s)) is the multiplicity of
sy as a summand of the symmetric function f.
Problem (Stanley’'s Problem 9, 2000)

Find a combinatorial interpretation of the plethysm coefficients
(S(n) © S(m)> Sx) that makes it clear they are non-negative.

Equivalently, find a combinatorial interpretation for the multiplicity
of the irreducible GL4(C)-module V*(E) in Sym”Sym™E.



SLy(C)-plethysms revisited

Proposition

Let u and v be partitions and let d, e € N. Let E be the natural
2-dimensional representation of SLy(C). The following are
equivalent

> AMSymYE g1, ) ASym°E;

> (suosay)(a,a ") =(ssose))(aa7h);

> (5.0 5@)(1:9) = (5 © 5))(L,q) up to a power of g
> s.(l,q,..., q?) =s,(1,q,...,9°%) up to a power of q.



SLy(C)-plethysms revisited

Proposition

Let u and v be partitions and let d, e € N. Let E be the natural
2-dimensional representation of SLy(C). The following are
equivalent

> AMSymYE g1, ) ASym°E;

> (suosa))(a,a7 ) = (s, 050))(a, 971

> (5.0 5@)(1:9) = (5 © 5))(L,q) up to a power of g
> s.(l,q,..., q?) =s,(1,q,...,9°%) up to a power of q.

For example, Hermite Reciprocity
» SymMSymVE =aL,(C) SymVSymME;
> somy © sy (1, 9) = sy © semy (L, q);
> smy(L, a0, qY) = sy (L, g, .., gM);
» |Parpn(n)| = |Paryxpm(n)| for all n € No.

where Par,yp(n) is the partitions of n fitting into an a x b box.



§3: Maximal summands in plethysms

A partition A\ dominates a partition k if the Young diagram of «
can be obtained from the Young diagram of X\ by repeatedly
moving boxes downwards. For instance

- | [
> !

Quiz. Choose partitions  and X of n (a very large number)
uniformly at random. What, roughly, is the chance that x and A
are comparable in the dominance order?



§3: Maximal summands in plethysms

A partition A\ dominates a partition k if the Young diagram of «
can be obtained from the Young diagram of X\ by repeatedly
moving boxes downwards. For instance

- | [
> !

Quiz. Choose partitions  and X of n (a very large number)
uniformly at random. What, roughly, is the chance that x and A
are comparable in the dominance order?

Answer. Asymptotically 0, by a theorem of Pittel (1997).

n 5 6 10 20 30 35
Pcomparable 1 0.967 0.904 0.782 0.716 0.694

But no problem if you guessed something else: the convergence is
very slow, and the small cases are misleading.



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 23,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is

S(ln) oS = Z Sg[a]

acPargistinct (n)



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 2[3,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is

S(ln) oS = Z Sg[a]

aepardistinct(n)
For instance, if n = 6 then
S(16) © %2 = 5(7,15) T S(6,3.1,1,1) T S(5.4.2,1) t S(4.4.)
and (7,1%),(6,3,1,1,1),(5,4,2,1), (4,4, 4) are all incomparable.



Most plethysms have many different maximal summands.

Extreme example: s(1n) o s2). Let n € N. Given a partition « of n
with distinct parts, let 2[a] be the partition of 2n with leading
diagonal hook lengths 2a1, 2an, ...

| 2[4,2] 23,2,1]
8 | |6

The plethysm s(1n) o 52y corresponding to A" Sym?E is
S(ln) oS = Z Sg[a]
a€Pargistinct (N)
in which 2[a] and 2[3] are incomparable for all distinct o and 5.

Thus every constituent of s(;n) o 52 is both maximal and minimal.
All of them are determined by our theorem.



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

/SN /NS
(3,3} (2,4} {1,5)

NN S

{2,3} {1,4}

/N S
22 {13

N/

9]

|
(1,1}
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Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

SN /N S
33} {24 {15 ;
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{2,3} {1,4}
/NS
{2,2} {1,3}
N/
9]
| BE
(1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

S N /N S
(33} {24} {15} ;
N SN\ S : (7,1°) )
{2,3} {1,4} 6,3,1,1,1
RN
{2,2} {1,3}
NS
{1,2}
|
(1,13



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

/SN /S N/

(3,3} {24} {15} i
NSNS : (7,1%) )
{2,3} {1,4} 3, 1,1,
SN/ (5,4,2,1)

2,2} (1,3}

N/
(1,2}
|
{1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner
shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

Taking m = 2 we get the decomposition of s(1n) 0 52). For n = 6:

N/ N/ N/
{3,4} {2,5} {1,6}

SN /N S
3.3} {24} {15} ;

NSNS ( (7,15) |

2.3 {14 6.3,1,1,

SN S (5.4.2.1)
{2,2} {1,3} (4,4,4)

N

(1,2}

|
(1,1}



Theorem (Paget-W 2018)

The maximal constituents of the plethysm s, o s, are precisely the
maximal weights of the plethystic semistandard tableaux of outer
shape v and inner shape ji.

A plethystic semistandard tableaux of outer shape (1”) and inner

shape (m) is the same as a set of n distinct m-multisets of N,
ordered by the majorization order.

» The 2018 proof uses the symmetric group.
» In 2020 with Melanie de Boeck we gave a shorter proof using
polynomial representations of GL,(C).

» Work in 2022-23 gives a still shorter combinatorial proof, with
an explicit ‘gap’ result on the separation between maximal
and minimal summands.



84: Foulkes' Conjecture and plethysm stability
Conjecture (Foulkes 1950)

If m < n then s,y © S(m) — S(m) © S(n) IS @ non-negative integer
linear combination of Schur functions.
Equivalently
» There is an injective homomorphism of GL(E)-modules
Sym™Sym"E — Sym"Sym™E when dim E = mn.
» There is an injective homomorphism of CS,,,,-modules
Clams, = Clems,
» Let Sy, act on set partitions of {1,..., mn}. The permutation
character for the action on m sets of size n contains the
permutation character for the action on n sets of size m.



84: Foulkes' Conjecture and plethysm stability

Conjecture (Foulkes 1950)
If m < n then s,y © S(m) — S(m) © S(n) IS @ non-negative integer
linear combination of Schur functions.

Equivalently
» There is an injective homomorphism of GL(E)-modules
Sym™Sym"E — Sym"Sym™E when dim E = mn.
» There is an injective homomorphism of CS,,,,-modules
Clams, = Clems,
» Let Sy, act on set partitions of {1,..., mn}. The permutation
character for the action on m sets of size n contains the
permutation character for the action on n sets of size m.
Proved when
» m =2 Thrall (1942)
» m =3 Thrall (1942), Dent and Siemons (2000)
» m =4 McKay (2008),
» m =5 Cheung, lkenmeyer and Mkrychyan (2015)
and when m + n < 20, Evseev, Paget and Wildon (2008).



Foulkes Module Sym’Sym®E
Logarithms of multiplicities of irreducibles V*(E)

The marked interval, enlarged on right, is all partitions of 56 with
first part 19



Foulkes Module Sym’Sym®E

Logarithmic differences in multiplicities: for big dots, smaller
multiplicity is 0.







Theorem (Stability for the Foulkes plethysm)

Let v be a partition, and let (mn — |7y|;~y) denote the partition
(mn—1|v],71,-..,7). The plethysm coefficient

(S(n) © S(m)> S(mn—1))

is constant for all m and n sufficiently large.

Hence stable Foulkes Conjecture holds, with equality. Proved by

>

vvyvyyVvyy

v

Weintraub (1988): recurrence relation on Schur functions
Carré=Thibon (1992): vertex operators

Brion (1993): dominant maps of algebraic varieties
Manivel (1997): stable embeddings of varieties
Bowman—Paget (2018): partition algebra

Bowman—Paget-W (2023): ramified partition algebra, proving
stability of (S(,4(n—|v|)) © S(m)» S(mn—|~;7)) for any partition v.
Paget, W (2025): plethystic semistandard tableaux, more general
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Weintraub (1988): recurrence relation on Schur functions
Carré=Thibon (1992): vertex operators

Brion (1993): dominant maps of algebraic varieties
Manivel (1997): stable embeddings of varieties
Bowman—Paget (2018): partition algebra

Bowman—Paget-W (2023): ramified partition algebra, proving
stability of (S(,4(n—|v|)) © S(m)» S(mn—|~;7)) for any partition v.
Paget, W (2025): plethystic semistandard tableaux, more general

The BP and BPW proofs are notable as the only ones to give an
explicit formula for the multiplicity that is clearly non-negative.
This is a significant step towards a solution of Stanley's Problem 9.



Using combinatorial arguments with plethystic semistandard
tableaux Paget and | have given unified proofs of every known
stability result on plethysms of two Schur functions.

Here are two representative examples.

Theorem (Brion 1993)

Let v € Par(n), u € Par(m), A\ € Par(mn). Let r € N. The
plethysm coefficient

(v 0 Syt N(1r)s SA+ N(nr))

is constant for all N at least an explicit bound.

Theorem (Paget-W)

Let v € Par(n), u/p* € SkewPar(m), A\ € Par(mn). Let r € N.
The plethysm coefficient

<Sl/ O 5((+ Nk)/p*s 5)\+Nm$>

is constant for all N at least an explicit bound.



Theorem (Law—Okitani 2023)

Let v € Par(n) and A € Par(mn). Let d be odd. The plethysm
coefficient

(SuU (M) © S(m)s S\ + N(m—d) U (dV) )

is constant for N sufficiently large.

Our methods generalize the Law—Okitani result further, from (m)
to an arbitrary rectangular partition. The proof uses plethystic
semistandard tableaux with negative entries and is entirely
combinatorial.

Theorem (Paget-W)

Let v € Par(n), let m, b € N and let A € Par(mbn). Let d be
odd. The plethysm coefficient

(Su LI (1V) © S(mb)> SA+ N(m—d—1)b+N(15) LI (d") )

is constant for N at least an explicit bound.



The ultimate stability results?

Set A® (o, 8) = (A + B)U . Let /. be a skew partition and
let v be a partition.

Theorem (Signed inner stability, Paget-W 2025)
Let k= and k* be partitions. If || is even then set v(N) = v for
all N; if || is odd then set v(N) = v if N is even and v(N) = o/ if
N is odd. Then

(S,0) © S(u@ N(w—5+)) /1> A @ N (= +) )

is constant for N at least an explicit bound.

Theorem (Signed outer stability, Paget-W 2025)
Let R € N. Let (k=,Kk") be a strongly maximal signed weight of
shape ju/ s and size R. Set v(N) = v + (NR) if (k= k") has sign
+1 and vN) = v L (RN) if (k~, k") has sign —1. Then

<SV(N) o Sy/p*7s)\69N(m*,m+)>

is constant for N at least an explicit bound.



Thank you! Any questions?




Thank you! Any questions?

Question. What other classical SLy(C)-isomorphisms have
modular analogues?



