An introduction to plethysm

Mark Wildon

MFO Miniworkshop 2020

Organizers: Christine Bessenrodt, Chris Bowman, Eugenio Giannelli

Outline

- $\S1$ Three settings for plethysm
- $\S2$ Maximal constituents of plethysms
- $\S 3$ Relationships between plethysm coefficients
- §4 Foulkes' Conjecture

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

Polynomial representations of GL(E); take E = C³ Sym²E, ∇^(2,1)(E)

Symmetric functions $s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$ $s_{(2,1)}(x_1, x_2, x_3) = x_2^{11} + x_3^{11} + x_2^{12} + x_3^{11} + x_3^{12} + x_3^{11} + x_3^{12} + x_3^{11} + x_3^{1$

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

- Sym²E, $\nabla^{(2,1)}(E)$
- Tensor product: $Sym^2 E \otimes Sym^2 E$

Symmetric functions

 $S_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$ $S_{(2,1)}(x_1, x_2, x_3) = x_2^{11} + x_3^{11} + x_2^{12} + x_3^{12} + x_2^{13} + x_3^{12} + x_3^{13} + x_3^{12} + x_3^{13} + x_3^{$

• Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

- ▶ Sym²E, $\nabla^{(2,1)}(E)$
- Tensor product: $Sym^2 E \otimes Sym^2 E$
- Symmetric power of symmetric power: Sym²(Sym²E)

Symmetric functions

 $s_{(2)}(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^3 + x_1x_2 + x_1x_3 + x_2x_3$ $s_{(2,1)}(x_1, x_2, x_3) = x_2^{11} + x_3^{11} + x_2^{12} + x_3^{12} + x_2^{13} + x_2^{12} + x_3^{13} + x_3^{12} + x_3^{13} + x_3^$

- Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
- Evaluate at monomials: $s_{(2)}(x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3)$

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

Sym²
$$E$$
, $\nabla^{(2,1)}(E)$

• Tensor product: $\operatorname{Sym}^2 E \otimes \operatorname{Sym}^2 E$

Symmetric power of symmetric power: Sym²(Sym²E)

• Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$

- Symmetric functions

 - Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
 - Evaluate at monomials: s₍₂₎(x₁², x₂², x₃², x₁x₂, x₁x₃, x₂x₃)
 Plethysm: (s_ν ∘ s_µ)(x₁, x₂,...)

Representations of symmetric groups : now need dim E = 4 $S^{(2)} = \mathbb{C}_{S_2}, \ S^{(2,1)} = \left\langle \frac{\overline{12}}{3} - \frac{\overline{13}}{2}, \frac{\overline{13}}{2} - \frac{\overline{23}}{1} \right\rangle$

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

Sym²
$$E$$
, $\nabla^{(2,1)}(E)$

• Tensor product: $\operatorname{Sym}^2 E \otimes \operatorname{Sym}^2 E$

Symmetric power of symmetric power: Sym²(Sym²E)

• Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$

- Symmetric functions

 - Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
 - Evaluate at monomials: s₍₂₎(x₁², x₂², x₃², x₁x₂, x₁x₃, x₂x₃)
 Plethysm: (s_ν ∘ s_µ)(x₁, x₂,...)

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

Sym²
$$E$$
, $\nabla^{(2,1)}(E)$

• Tensor product: $\operatorname{Sym}^2 E \otimes \operatorname{Sym}^2 E$

Symmetric power of symmetric power: Sym²(Sym²E)

• Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$

- Symmetric functions

 - Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
 - Evaluate at monomials: s₍₂₎(x₁², x₂², x₃², x₁x₂, x₁x₃, x₂x₃)
 Plethysm: (s_ν ∘ s_µ)(x₁, x₂, ...)

▶ Representations of symmetric groups : now need dim E = 4
 ▶ S⁽²⁾ = C_{S2}, S^(2,1) = 1
 ▶ Permutation representation on Young subgroup: C_{S2×S2} ↑ S₄

• Permutation representation on wreath product $\mathbb{C}_{S_2 \setminus S_2} \uparrow^{S_4}$

▶ Polynomial representations of GL(E); take $E = \mathbb{C}^3$

Sym²
$$E$$
, $\nabla^{(2,1)}(E)$

• Tensor product:
$$\operatorname{Sym}^2 E \otimes \operatorname{Sym}^2 E$$

Symmetric power of symmetric power: Sym²(Sym²E)

• Composition of Schur functors: $\nabla^{\nu}(\nabla^{\mu}(E))$

- Symmetric functions

 - Multiplication: $s_{(2)}(x_1, x_2, x_3)^2$
 - Evaluate at monomials: s₍₂₎(x₁², x₂², x₃², x₁x₂, x₁x₃, x₂x₃)
 Plethysm: (s_ν ∘ s_µ)(x₁, x₂,...)

Representations of symmetric groups : now need dim E = 4
 S⁽²⁾ = C_{S2}, S^(2,1) = ⟨ 12/3 / 2 / 13 , 13/2 - 23/1 ⟩
 Permutation representation on Young subgroup: C_{S2×S2}↑^{S4}
 Permutation representation on wreath product C_{S2×S2}↑^{S4}
 (S^μ)^{⊗n} ⊗ S^ν↑^{Smn}_{Sm}, where μ ∈ Par(m), ν ∈ Par(n)

Disclaimer: I am not an algebraic geometer.

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

• Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) - (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E.$

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2, 2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E.$
- Take dim E = 2. Geometrically:
 - $\blacktriangleright \operatorname{Sym}^2 E = \langle v_1 v_1, 2 v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\blacktriangleright \mathcal{O}(\mathrm{Sym}^2 E) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let C be the image of the squaring map $E \hookrightarrow \text{Sym}^2 E$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E.$
- Take dim E = 2. Geometrically:
 - $\blacktriangleright \operatorname{Sym}^2 E = \langle v_1 v_1, 2 v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\blacktriangleright \mathcal{O}(\mathrm{Sym}^2 E) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let C be the image of the squaring map $E \hookrightarrow \text{Sym}^2 E$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \text{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the GL(*E*)-submodule of $\mathcal{O}(\text{Sym}^2 E)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\nabla^{(2,2)} E$.

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E.$
- Take dim E = 2. Geometrically:
 - $\blacktriangleright \operatorname{Sym}^2 E = \langle v_1 v_1, 2 v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\blacktriangleright \mathcal{O}(\mathrm{Sym}^2 E) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let C be the image of the squaring map $E \hookrightarrow \text{Sym}^2 E$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \operatorname{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the GL(*E*)-submodule of $\mathcal{O}(\operatorname{Sym}^2 E)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\nabla^{(2,2)}E$. Two steps up: $f \in \operatorname{Sym}^4(\operatorname{Sym}^2 E) = \mathcal{O}(\operatorname{Sym}^2 E)_4$ may

- Vanish doubly on $C: (Y_{11}Y_{22} Y_{12}^2)^2$
- Vanish singly on C: $Y_{11}^2(Y_{11}Y_{22} Y_{12}^2)$

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...

Consider $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \to \operatorname{Sym}^4 E$: $(uv)(u'v') \mapsto uvu'v'$.

- Kernel is $\nabla^{(2,2)}E$. Why? $(v_1v_1)(v_2v_2) (v_1v_2)(v_1v_2)$ is highest weight, of weight (2,2).
- $\operatorname{Sym}^2(\operatorname{Sym}^2 E) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E.$
- Take dim E = 2. Geometrically:
 - $\blacktriangleright \operatorname{Sym}^2 E = \langle v_1 v_1, 2 v_1 v_2, v_2 v_2 \rangle_{\mathbb{C}}$
 - $\blacktriangleright \mathcal{O}(\mathrm{Sym}^2 E) = \mathbb{C}[Y_{11}, Y_{12}, Y_{22}]$
 - let C be the image of the squaring map $E \hookrightarrow \text{Sym}^2 E$,

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \mapsto \alpha^2 \mathbf{v}_1 \mathbf{v}_1 + 2\alpha\beta \mathbf{v}_1 \mathbf{v}_2 + \beta^2 \mathbf{v}_2 \mathbf{v}_2$$

• $C = \text{Zeros}(Y_{11}Y_{22} - Y_{12}^2)$; the GL(*E*)-submodule of $\mathcal{O}(\text{Sym}^2 E)$ generated by $Y_{11}Y_{22} - Y_{12}^2$ is $\nabla^{(2,2)} E$.

Two steps up: $f \in \text{Sym}^4(\text{Sym}^2 E) = \mathcal{O}(\text{Sym}^2 E)_4$ may

- Vanish doubly on C: $(Y_{11}Y_{22} Y_{12}^2)^2$
- Vanish singly on $C: Y_{11}^2(Y_{11}Y_{22} Y_{12}^2)$
- ▶ Such functions are in kernel of $\operatorname{Sym}^4(\operatorname{Sym}^2 E) \to \operatorname{Sym}^8 E$, so $\operatorname{Sym}^4(\operatorname{Sym}^2 E) \cong \nabla^{(4,4)} E \oplus \nabla^{(6,2)} E \oplus \nabla^{(8)} E$.

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

• Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute,

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute, ...
 Motivated by

$$\mathrm{Sym}^4 E \oplus \nabla^{(2,2)}(E) \cong \mathrm{Sym}^2(\mathrm{Sym}^2 E) \leftrightarrow s_{(2)} \circ s_{(2)} = s_{(4)} + s_{(2,2)},$$

we define $s_{\nu} \circ s_{\mu}$ by evaluating s_{ν} at the monomials in s_{μ} .

•
$$s_{\mu}(x_1, x_2, \ldots) = \sum_{t \in \text{SSYT}(\mu)} x^t$$

• $(s_{\nu} \circ s_{\mu})(x) = s_{\nu}(x^t : t \in \text{SSYT}(\mu))$

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute, ...
 Motivated by

$$\mathrm{Sym}^4 E \oplus \nabla^{(2,2)}(E) \cong \mathrm{Sym}^2(\mathrm{Sym}^2 E) \leftrightarrow s_{(2)} \circ s_{(2)} = s_{(4)} + s_{(2,2)},$$

we define $s_{\nu} \circ s_{\mu}$ by evaluating s_{ν} at the monomials in s_{μ} .

$$s_{\mu}(x_1, x_2, \ldots) = \sum_{t \in \text{SSYT}(\mu)} x^t$$
$$(s_{\nu} \circ s_{\mu})(x) = s_{\nu}(x^t : t \in \text{SSYT}(\mu))$$

Define a *plethystic semistandard tableau* of shape μ^{ν} to be a semistandard ν -tableau whose entries are themselves μ -tableaux. Then

$$(s_{
u} \circ s_{\mu})(x) = \sum_{T \in \mathrm{PSSYT}(
u,\mu)} x^T.$$

Plethystic tableaux example

Define a *plethystic semistandard tableau* of shape μ^{ν} to be a semistandard ν -tableau whose entries are themselves μ -tableaux. Then

$$(s_{
u} \circ s_{\mu})(x) = \sum_{T \in \mathrm{PSSYT}(
u,\mu)} x^T$$

For example, the plethystic semistandard tableaux of shape $(2)^{(3)}$ and weight (2, 2, 2) are

and so $(s_{(3)} \circ s_{(2)})(x_1, x_2, x_3) = \dots + 5x_1^2x_2^2x_3^3 + \dots$

Plethysm defined for symmetric functions

The substitution definition tells us that $(f + g) \circ h = f \circ h + g \circ h$. Moreover, $f \circ p_{\ell} = p_{\ell} \circ f$ if f is a positive integral combination of monomials.

Definition

The plethystic product \circ on the ring Λ of symmetric functions is the unique product satisfying

$$p_{\ell} \circ p_{m} = p_{\ell m}$$

$$(f + g) \circ h = f \circ h + g \circ h$$

$$p_{\ell} \circ (f + g) = p_{\ell} \circ f + p_{\ell} \circ g$$
for all $f, g, h \in \Lambda$

Highly recommended: N. A. Loehr and J. B. Remmel, *A* computational and combinatorial exposé of plethystic calculus.

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

► (4, 2, 2) ≥ (3, 3, 1, 1),

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

• (4,1,1) and (3,3) are incomparable.

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

- ► (4, 2, 2) ⊵ (3, 3, 1, 1),
- (4,1,1) and (3,3) are incomparable.

Quiz: Choose partitions λ and λ^* of r (a large number) uniformly at random. What is the chance that λ and λ^* are comparable?

$\S2$: Maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

- ► (4, 2, 2) ⊵ (3, 3, 1, 1),
- (4,1,1) and (3,3) are incomparable.

Quiz: Choose partitions λ and λ^* of r (a large number) uniformly at random. What is the chance that λ and λ^* are comparable? Answer (Pittel): Almost zero.

Theorem (Paget-W 2016)

The maximal partitions λ such that s_{λ} appears in $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of shape μ^{ν} .

$\S2$: Maximal constituents of plethysms

Let $\lambda, \lambda^* \in Par(r)$. We say λ dominates λ^* , and write $\lambda \succeq \lambda^*$, if

$$\lambda_1 + \dots + \lambda_j \ge \lambda_1^\star + \dots + \lambda_j^\star.$$

for all j. For example

- ► (4, 2, 2) ≥ (3, 3, 1, 1),
- (4,1,1) and (3,3) are incomparable.

Quiz: Choose partitions λ and λ^* of r (a large number) uniformly at random. What is the chance that λ and λ^* are comparable? Answer (Pittel): Almost zero.

Theorem (Paget–W 2016)

The maximal partitions λ such that s_{λ} appears in $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of shape μ^{ν} .

In deBoeck–Paget–W, *Plethysms of symmetric functions and highest weight representations*, arXiv 1810.03448 (2018) we used highest weight vectors to give a simpler proof.

Haskell software for enumerating PSSYTs

*Example> display \$ maximalPSkewTableaux 3 ([3,3],[]) ([2,1],[]) [12, 3, 3]11 11 11 2 2 2 11 11 11 3 3 3 [11, 5, 2]11 11 11 2 2 2 11 11 12 3 3 2 [10,7,1] 11 11 11 2 2 2 11 12 12 3 2 2 [9, 9]11 11 11 2 2 2 12 12 12 2 2 2 Shows that $s_{(3,3)} \circ s_{(2,1)}$ has maximals

 $s_{(12,3,3)}, s_{(11,5,2)}, s_{(10,7,1)}, s_{(9,9)}.$

$\S3$ Relationships between plethysm coefficients

The Schur functions are an orthonormal basis for the inner product $\langle -, - \rangle$ on symmetric functions.

Theorem (deBoeck-Paget-W 2018)

If r is at least the greatest part of μ then

$$\langle \mathbf{s}_{\nu} \circ \mathbf{s}_{(r) \sqcup \mu}, \mathbf{s}_{(nr) \sqcup \lambda} \rangle = \langle \mathbf{s}_{\nu} \circ \mathbf{s}_{\mu}, \mathbf{s}_{\lambda} \rangle.$$

- Proved by Newell when $\nu = (n)$ or $\nu = (1^n)$ (1951)
- ▶ Proved when $\mu = (1^m)$ by Bruns–Conca–Varbaro (2013)

$\S3$ Relationships between plethysm coefficients

The Schur functions are an orthonormal basis for the inner product $\langle -, - \rangle$ on symmetric functions.

Theorem (deBoeck-Paget-W 2018)

If r is at least the greatest part of μ then

$$\langle \mathbf{s}_{\nu} \circ \mathbf{s}_{(r) \sqcup \mu}, \mathbf{s}_{(nr) \sqcup \lambda} \rangle = \langle \mathbf{s}_{\nu} \circ \mathbf{s}_{\mu}, \mathbf{s}_{\lambda} \rangle.$$

- Proved by Newell when $\nu = (n)$ or $\nu = (1^n)$ (1951)
- ▶ Proved when $\mu = (1^m)$ by Bruns–Conca–Varbaro (2013)

Theorem (Brion 1993, deBoeck–Paget–W 2018) If $r \in \mathbb{N}$ then

$$\langle s_{
u} \circ s_{\mu+(1^r)}, s_{\lambda+(n^r)}
angle \geq \langle s_{
u} \circ s_{\mu}, s_{\lambda}
angle$$

- Both proofs determine when the multiplicity stabilises
- Our proof also gives a combinatorial upper bound on the stable multiplicity

§4 Foulkes' Conjecture

Let $\pi^{(m^n)}$ be the permutation character of S_{mn} acting on the set $\Omega^{(m^n)}$ of set partitions of $\{1, 2, ..., mn\}$ into *n* sets each of size *m*.

Conjecture (Foulkes 1950)

If $m \leq n$ then there is an injection $\mathbb{C}\Omega^{(n^m)} \to \mathbb{C}\Omega^{(m^n)}$

Equivalently

- If $m \leq n$ then $\pi^{(m^n)}$ contains $\pi^{(n^m)}$.
- Sym^m(SymⁿE) injects into Symⁿ(Sym^mE)
- ► s_(m) ∘ s_(n) − s_(n) ∘ s_(m) is a non-negative integral linear combination of Schur functions.

§4 Foulkes' Conjecture

Let $\pi^{(m^n)}$ be the permutation character of S_{mn} acting on the set $\Omega^{(m^n)}$ of set partitions of $\{1, 2, ..., mn\}$ into *n* sets each of size *m*.

Conjecture (Foulkes 1950)

If $m \leq n$ then there is an injection $\mathbb{C}\Omega^{(n^m)} \to \mathbb{C}\Omega^{(m^n)}$

Equivalently

- If $m \le n$ then $\pi^{(m^n)}$ contains $\pi^{(n^m)}$.
- Sym^m(SymⁿE) injects into Symⁿ(Sym^mE)
- ► s_(m) ∘ s_(n) − s_(n) ∘ s_(m) is a non-negative integral linear combination of Schur functions. Remark: It is not even known it is positive in the monomial basis.

Foulkes for n = 2:

- $\blacktriangleright \operatorname{Sym}^2 \operatorname{Sym}^n E \leftrightarrow s_{(2)} \circ s_{(n)} = s_{(2n)} + s_{(2n-2,2)} + \cdots$
- ► Sym^{*n*}Sym²E \leftrightarrow $s_{(n)} \circ s_{(2)} = \sum_{\lambda \in Par(n)} s_{2\lambda}$
- Hence FC is true when m = 2 and all n
- ► These are the only multiplicity-free Foulkes characters for mn ≥ 18 (Saxl, 1980, W 2009, Godsil–Meagher 2010)

§4 Foulkes' Conjecture

Let $\pi^{(m^n)}$ be the permutation character of S_{mn} acting on the set $\Omega^{(m^n)}$ of set partitions of $\{1, 2, ..., mn\}$ into *n* sets each of size *m*.

Conjecture (Foulkes 1950)

If $m \leq n$ then there is an injection $\mathbb{C}\Omega^{(n^m)} \to \mathbb{C}\Omega^{(m^n)}$

Equivalently

- If $m \le n$ then $\pi^{(m^n)}$ contains $\pi^{(n^m)}$.
- Sym^m(SymⁿE) injects into Symⁿ(Sym^mE)
- ► s_(m) ∘ s_(n) − s_(n) ∘ s_(m) is a non-negative integral linear combination of Schur functions. Remark: It is not even known it is positive in the monomial basis.

Foulkes for n = 2:

- $\blacktriangleright \operatorname{Sym}^2 \operatorname{Sym}^n E \leftrightarrow s_{(2)} \circ s_{(n)} = s_{(2n)} + s_{(2n-2,2)} + \cdots$
- ► Sym^{*n*}Sym²E \leftrightarrow $s_{(n)} \circ s_{(2)} = \sum_{\lambda \in Par(n)} s_{2\lambda}$
- Hence FC is true when m = 2 and all n
- ► These are the only multiplicity-free Foulkes characters for mn ≥ 18 (Saxl, 1980, W 2009, Godsil–Meagher 2010)

Progress on Foulkes' Conjecture: $m \le n$

- True for m = 3: Thrall (1942), Dent-Siemons (2000, symmetric group)
- True for $m + n \le 17$: Mueller–Neunhoffer (2005);
- Kimoto-Lee (2019): explicit highest weight vectors for Sym³SymⁿE;
- True for m = 4: McKay (2008): the obvious map CΩ^(n⁴) → CΩ^(4ⁿ), proposed by Howe (1987), is injective;
- The obvious map CΩ^(5⁵) → CΩ^(5⁵) is not injective: Mueller−Neunhoffer (2005);
- True for $m + n \le 19$: Evseev–Paget–W (2014);
- True for m = 5: Cheung–Ikenmeyer–Mkrtchyan (2015)

Too easy?

Problem (Stanley Problem 9)

Find a combinatorial rule expressing $s_{(n)} \circ s_{(m)}$ as a non-negative integral linear combination of Schur functions.

Foulkes' Conjecture for m = 7, n = 8Logarithms of multiplicities

Foulkes' Conjecture for m = 7, n = 8

Logarithmic differences in multiplicities: for big dots, smaller multiplicity is 0.

7	-										: : · : :					
6	-			-						s					1	
5	-															
4	-			Charles	Avia Ver	No.	a have	D D D D D D D D D D								
3	-				Post in	No. of the lot of the	PACKAGE ST	Sec.						R .		
2			Property in	ALC: NO	1111									• •		•
1	States and a second		ORDERAL STREET	A States	Same	Mary -	Charles in the second			NAME OF A				-		