An introduction to plethysm

Mark Wildon

MFO Miniworkshop 2020
Organizers: Christine Bessenrodt, Chris Bowman, Eugenio Giannelli

Outline

§1 Three settings for plethysm
§2 Maximal constituents of plethysms
§3 Relationships between plethysm coefficients
§4 Foulkes' Conjecture

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- Symmetric functions

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $\operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
- $\operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric functions
- $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
$\rightarrow \operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Symmetric functions
$\rightarrow s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
$\rightarrow \operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
$\rightarrow s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$
- Plethysm: $\left(s_{\nu} \circ s_{\mu}\right)\left(x_{1}, x_{2}, \ldots\right)$
- Representations of symmetric groups: now need $\operatorname{dim} E=4$
$\rightarrow S^{(2)}=\mathbb{C}_{S_{2}}, S^{(2,1)}=\left\langle\overline{\left.\left.\frac{\overline{12}}{\underline{3}}-\frac{\overline{13}}{\underline{2}}, \frac{\overline{13}}{\underline{2}}-\frac{\overline{23}}{\underline{1}}\right\rangle\right) .}\right.$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
$-\operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
$\rightarrow s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
- Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$
\rightarrow Plethysm: $\left(s_{\nu} \circ s_{\mu}\right)\left(x_{1}, x_{2}, \ldots\right)$
- Representations of symmetric groups: now need $\operatorname{dim} E=4$
$-S^{(2)}=\mathbb{C}_{S_{2}}, S^{(2,1)}=\left\langle\overline{\frac{12}{3}}-\frac{\overline{13}}{\underline{2}}, \frac{\overline{13}}{\underline{2}}-\frac{\overline{23}}{\underline{1}}\right\rangle$
- Permutation representation on Young subgroup: $\mathbb{C}_{S_{2} \times S_{2}} \uparrow^{S_{4}}$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
$-\operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
$\rightarrow s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
\rightarrow Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$
- Plethysm: $\left(s_{\nu} \circ s_{\mu}\right)\left(x_{1}, x_{2}, \ldots\right)$
- Representations of symmetric groups: now need $\operatorname{dim} E=4$
$-S^{(2)}=\mathbb{C}_{S_{2}}, S^{(2,1)}=\left\langle\overline{\frac{12}{3}}-\frac{\overline{13}}{\underline{2}}, \frac{\overline{13}}{\underline{2}}-\frac{\overline{23}}{\underline{1}}\right\rangle$
- Permutation representation on Young subgroup: $\mathbb{C}_{S_{2} \times S_{2}} \uparrow^{S_{4}}$
- Permutation representation on wreath product $\mathbb{C}_{S_{2} \backslash S_{2}} \uparrow{ }^{S_{4}}$

§1 Three settings for plethysms

- Polynomial representations of $\mathrm{GL}(E)$; take $E=\mathbb{C}^{3}$
$\rightarrow \operatorname{Sym}^{2} E, \nabla^{(2,1)}(E)$
- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right)$
- Composition of Schur functors: $\nabla^{\nu}\left(\nabla^{\mu}(E)\right)$
- Symmetric functions
$\rightarrow s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
\rightarrow Multiplication: $s_{(2)}\left(x_{1}, x_{2}, x_{3}\right)^{2}$
- Evaluate at monomials: $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$
- Plethysm: $\left(s_{\nu} \circ s_{\mu}\right)\left(x_{1}, x_{2}, \ldots\right)$
- Representations of symmetric groups: now need $\operatorname{dim} E=4$
$-S^{(2)}=\mathbb{C}_{S_{2}}, S^{(2,1)}=\left\langle\overline{\frac{12}{3}}-\frac{\overline{13}}{\underline{2}}, \frac{\overline{13}}{\underline{2}}-\frac{\overline{23}}{\underline{1}}\right\rangle$
- Permutation representation on Young subgroup: $\mathbb{C}_{S_{2} \times S_{S}} \uparrow^{S_{4}}$
- Permutation representation on wreath product $\mathbb{C}_{S_{2} 2 S_{2}} \uparrow^{S_{4}}$
- $\overline{\left(S^{\mu}\right)^{\otimes n} \otimes S^{\nu}} \uparrow_{S_{m} S_{n}}^{S_{m n}}$ where $\mu \in \operatorname{Par}(m), \nu \in \operatorname{Par}(n)$

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer.

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E$.

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is
highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E$.
- Take $\operatorname{dim} E=2$. Geometrically:
- $\operatorname{Sym}^{2} E=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $E \hookrightarrow \operatorname{Sym}^{2} E$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is
highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E$.
- Take $\operatorname{dim} E=2$. Geometrically:
- $\operatorname{Sym}^{2} E=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $E \hookrightarrow \operatorname{Sym}^{2} E$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the $\mathrm{GL}(E)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\nabla^{(2,2)} E$.

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is
highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E$.
- Take $\operatorname{dim} E=2$. Geometrically:
- $\operatorname{Sym}^{2} E=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $E \hookrightarrow \operatorname{Sym}^{2} E$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the GL($\left.E\right)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\nabla^{(2,2)} E$.
Two steps up: $f \in \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} E\right)=\mathcal{O}\left(\operatorname{Sym}^{2} E\right)_{4}$ may
- Vanish doubly on $\mathcal{C}:\left(Y_{11} Y_{22}-Y_{12}^{2}\right)^{2}$
- Vanish singly on $\mathcal{C}: Y_{11}^{2}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$

Fourth and fifth? Geometry and invariant theory

Disclaimer: I am not an algebraic geometer. But Fulton and Harris are ...
Consider $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{4} E:(u v)\left(u^{\prime} v^{\prime}\right) \mapsto u v u^{\prime} v^{\prime}$.

- Kernel is $\nabla^{(2,2)} E$. Why? $\left(v_{1} v_{1}\right)\left(v_{2} v_{2}\right)-\left(v_{1} v_{2}\right)\left(v_{1} v_{2}\right)$ is highest weight, of weight $(2,2)$.
- $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(2,2)} E \oplus \nabla^{(4)} E$.
- Take $\operatorname{dim} E=2$. Geometrically:
- $\operatorname{Sym}^{2} E=\left\langle v_{1} v_{1}, 2 v_{1} v_{2}, v_{2} v_{2}\right\rangle_{\mathbb{C}}$
- $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)=\mathbb{C}\left[Y_{11}, Y_{12}, Y_{22}\right]$
- let \mathcal{C} be the image of the squaring map $E \hookrightarrow \operatorname{Sym}^{2} E$,

$$
\alpha v_{1}+\beta v_{2} \mapsto \alpha^{2} v_{1} v_{1}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2} v_{2}
$$

- $\mathcal{C}=\operatorname{Zeros}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$; the $\mathrm{GL}(E)$-submodule of $\mathcal{O}\left(\operatorname{Sym}^{2} E\right)$ generated by $Y_{11} Y_{22}-Y_{12}^{2}$ is $\nabla^{(2,2)} E$.
Two steps up: $f \in \operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} E\right)=\mathcal{O}\left(\operatorname{Sym}^{2} E\right)_{4}$ may
- Vanish doubly on $\mathcal{C}:\left(Y_{11} Y_{22}-Y_{12}^{2}\right)^{2}$
- Vanish singly on $\mathcal{C}: Y_{11}^{2}\left(Y_{11} Y_{22}-Y_{12}^{2}\right)$
- Such functions are in kernel of $\operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} E\right) \rightarrow \operatorname{Sym}^{8} E$, so

$$
\operatorname{Sym}^{4}\left(\operatorname{Sym}^{2} E\right) \cong \nabla^{(4,4)} E \oplus \nabla^{(6,2)} E \oplus \nabla^{(8)} E
$$

Defining plethysm by plethystic tableaux

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.

Defining plethysm by plethystic tableaux

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute, ...

Defining plethysm by plethystic tableaux

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute, ... Motivated by

$$
\operatorname{Sym}^{4} E \oplus \nabla^{(2,2)}(E) \cong \operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \leftrightarrow s_{(2)} \circ s_{(2)}=s_{(4)}+s_{(2,2)}
$$

we define $s_{\nu} \circ s_{\mu}$ by evaluating s_{ν} at the monomials in s_{μ}.

- $s_{\mu}\left(x_{1}, x_{2}, \ldots\right)=\sum_{t \in \operatorname{SSYT}(\mu)} x^{t}$
- $\left(s_{\nu} \circ s_{\mu}\right)(x)=s_{\nu}\left(x^{t}: t \in \operatorname{SSYT}(\mu)\right)$

Defining plethysm by plethystic tableaux

We can define $s_{\nu} \circ s_{\mu}$ as the formal character of the composition of Schur functors $\nabla^{\nu} \circ \nabla^{\mu}$.

- Advantage: implies at once that $s_{\nu} \circ s_{\mu}$ is an integral linear combination of Schur functions.
- Disadvantage(s): not clear at first how to compute, ... Motivated by

$$
\operatorname{Sym}^{4} E \oplus \nabla^{(2,2)}(E) \cong \operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} E\right) \leftrightarrow s_{(2)} \circ s_{(2)}=s_{(4)}+s_{(2,2)}
$$

we define $s_{\nu} \circ s_{\mu}$ by evaluating s_{ν} at the monomials in s_{μ}.

- $s_{\mu}\left(x_{1}, x_{2}, \ldots\right)=\sum_{t \in \operatorname{SSYT}(\mu)} x^{t}$
- $\left(s_{\nu} \circ s_{\mu}\right)(x)=s_{\nu}\left(x^{t}: t \in \operatorname{SSYT}(\mu)\right)$

Define a plethystic semistandard tableau of shape μ^{ν} to be a semistandard ν-tableau whose entries are themselves μ-tableaux. Then

$$
\left(s_{\nu} \circ s_{\mu}\right)(x)=\sum_{T \in \operatorname{PSSYT}(\nu, \mu)} x^{T}
$$

Plethystic tableaux example

Define a plethystic semistandard tableau of shape μ^{ν} to be a semistandard ν-tableau whose entries are themselves μ-tableaux. Then

$$
\left(s_{\nu} \circ s_{\mu}\right)(x)=\sum_{T \in \operatorname{PSSYT}(\nu, \mu)} x^{T} .
$$

For example, the plethystic semistandard tableaux of shape (2) ${ }^{(3)}$ and weight $(2,2,2)$ are

and so $\left(s_{(3)} \circ s_{(2)}\right)\left(x_{1}, x_{2}, x_{3}\right)=\cdots+5 x_{1}^{2} x_{2}^{2} x_{3}^{3}+\cdots$.

Plethysm defined for symmetric functions

The substitution definition tells us that $(f+g) \circ h=f \circ h+g \circ h$. Moreover, $f \circ p_{\ell}=p_{\ell} \circ f$ if f is a positive integral combination of monomials.

Definition

The plethystic product \circ on the ring Λ of symmetric functions is the unique product satisfying
$-p_{\ell} \circ p_{m}=p_{\ell m}$

- $(f+g) \circ h=f \circ h+g \circ h$
- $p_{\ell} \circ(f+g)=p_{\ell} \circ f+p_{\ell} \circ g$
for all $f, g, h \in \Lambda$
Highly recommended: N. A. Loehr and J. B. Remmel, A computational and combinatorial exposé of plethystic calculus.
§2: Maximal constituents of plethysms
Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star}
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
§2: Maximal constituents of plethysms
Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star}
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star}
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of r (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable?

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of r (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable? Answer (Pittel): Almost zero.

Theorem (Paget-W 2016)

The maximal partitions λ such that s_{λ} appears in $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of shape μ^{ν}.

§2: Maximal constituents of plethysms

Let $\lambda, \lambda^{\star} \in \operatorname{Par}(r)$. We say λ dominates λ^{\star}, and write $\lambda \unrhd \lambda^{\star}$, if

$$
\lambda_{1}+\cdots+\lambda_{j} \geq \lambda_{1}^{\star}+\cdots+\lambda_{j}^{\star} .
$$

for all j. For example

- $(4,2,2) \unrhd(3,3,1,1)$,
- $(4,1,1)$ and $(3,3)$ are incomparable.

Quiz: Choose partitions λ and λ^{\star} of r (a large number) uniformly at random. What is the chance that λ and λ^{\star} are comparable? Answer (Pittel): Almost zero.

Theorem (Paget-W 2016)

The maximal partitions λ such that s_{λ} appears in $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of shape μ^{ν}.
In deBoeck-Paget-W, Plethysms of symmetric functions and highest weight representations, arXiv 1810.03448 (2018) we used highest weight vectors to give a simpler proof.

Haskell software for enumerating PSSYTs

```
*Example> display $ maximalPSkewTableaux 3 ([3,3],[]) ([2,1],[])
[12,3,3]
11 11 11
2 2 2
11 11 11
3 3 3
[11,5,2]
11 11 11
2 2 2
11 11 12
3 3 2
[10,7,1]
11 11 11
2 2 2
11 12 12
3 2 2
[9,9]
11 11 11
2 2 2
12 12 12
2 2 2
```

Shows that $s_{(3,3)} \circ s_{(2,1)}$ has maximals

$$
s_{(12,3,3)}, s_{(11,5,2)}, s_{(10,7,1)}, s_{(9,9)}
$$

$\S 3$ Relationships between plethysm coefficients

The Schur functions are an orthonormal basis for the inner product $\langle-,-\rangle$ on symmetric functions.
Theorem (deBoeck-Paget-W 2018)
If r is at least the greatest part of μ then

$$
\left\langle s_{\nu} \circ s_{(r) \sqcup \mu}, s_{(n r) \sqcup \lambda}\right\rangle=\left\langle s_{\nu} \circ s_{\mu}, s_{\lambda}\right\rangle .
$$

- Proved by Newell when $\nu=(n)$ or $\nu=\left(1^{n}\right)(1951)$
- Proved when $\mu=\left(1^{m}\right)$ by Bruns-Conca-Varbaro (2013)

§3 Relationships between plethysm coefficients

The Schur functions are an orthonormal basis for the inner product $\langle-,-\rangle$ on symmetric functions.
Theorem (deBoeck-Paget-W 2018)
If r is at least the greatest part of μ then

$$
\left\langle s_{\nu} \circ s_{(r) \sqcup \mu}, s_{(n r) \sqcup \lambda}\right\rangle=\left\langle s_{\nu} \circ s_{\mu}, s_{\lambda}\right\rangle .
$$

- Proved by Newell when $\nu=(n)$ or $\nu=\left(1^{n}\right)(1951)$
- Proved when $\mu=\left(1^{m}\right)$ by Bruns-Conca-Varbaro (2013)

Theorem (Brion 1993, deBoeck-Paget-W 2018) If $r \in \mathbb{N}$ then

$$
\left\langle s_{\nu} \circ s_{\mu+\left(1^{r}\right)}, s_{\lambda+\left(n^{r}\right)}\right\rangle \geq\left\langle s_{\nu} \circ s_{\mu}, s_{\lambda}\right\rangle
$$

- Both proofs determine when the multiplicity stabilises
- Our proof also gives a combinatorial upper bound on the stable multiplicity

§4 Foulkes' Conjecture

Let $\pi^{\left(m^{n}\right)}$ be the permutation character of $S_{m n}$ acting on the set $\Omega^{\left(m^{n}\right)}$ of set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes 1950) If $m \leq n$ then there is an injection $\mathbb{C} \Omega^{\left(n^{m}\right)} \rightarrow \mathbb{C} \Omega^{\left(m^{n}\right)}$
Equivalently

- If $m \leq n$ then $\pi^{\left(m^{n}\right)}$ contains $\pi^{\left(n^{m}\right)}$.
- $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n} E\right)$ injects into $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{m} E\right)$
- $S_{(m)} \circ S_{(n)}-S_{(n)} \circ S_{(m)}$ is a non-negative integral linear combination of Schur functions.

$\S 4$ Foulkes' Conjecture

Let $\pi^{\left(m^{n}\right)}$ be the permutation character of $S_{m n}$ acting on the set $\Omega^{\left(m^{n}\right)}$ of set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes 1950)
If $m \leq n$ then there is an injection $\mathbb{C} \Omega^{\left(n^{m}\right)} \rightarrow \mathbb{C} \Omega^{\left(m^{n}\right)}$
Equivalently

- If $m \leq n$ then $\pi^{\left(m^{n}\right)}$ contains $\pi^{\left(n^{m}\right)}$.
- $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n} E\right)$ injects into $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{m} E\right)$
- $S_{(m)} \circ S_{(n)}-S_{(n)} \circ S_{(m)}$ is a non-negative integral linear combination of Schur functions. Remark: It is not even known it is positive in the monomial basis.
Foulkes for $n=2$:
$-\operatorname{Sym}^{2} \operatorname{Sym}^{n} E \leftrightarrow s_{(2)} \circ s_{(n)}=s_{(2 n)}+s_{(2 n-2,2)}+\cdots$
- $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E \leftrightarrow s_{(n)} \circ s_{(2)}=\sum_{\lambda \in \operatorname{Par}(n)} s_{2 \lambda}$
- Hence FC is true when $m=2$ and all n
- These are the only multiplicity-free Foulkes characters for $m n \geq 18$ (Saxl, 1980, W 2009, Godsil-Meagher 2010)

$\S 4$ Foulkes' Conjecture

Let $\pi^{\left(m^{n}\right)}$ be the permutation character of $S_{m n}$ acting on the set $\Omega^{\left(m^{n}\right)}$ of set partitions of $\{1,2, \ldots, m n\}$ into n sets each of size m.
Conjecture (Foulkes 1950)
If $m \leq n$ then there is an injection $\mathbb{C} \Omega^{\left(n^{m}\right)} \rightarrow \mathbb{C} \Omega^{\left(m^{n}\right)}$
Equivalently

- If $m \leq n$ then $\pi^{\left(m^{n}\right)}$ contains $\pi^{\left(n^{m}\right)}$.
- $\operatorname{Sym}^{m}\left(\operatorname{Sym}^{n} E\right)$ injects into $\operatorname{Sym}^{n}\left(\operatorname{Sym}^{m} E\right)$
- $S_{(m)} \circ S_{(n)}-S_{(n)} \circ S_{(m)}$ is a non-negative integral linear combination of Schur functions. Remark: It is not even known it is positive in the monomial basis.
Foulkes for $n=2$:
$-\operatorname{Sym}^{2} \operatorname{Sym}^{n} E \leftrightarrow s_{(2)} \circ s_{(n)}=s_{(2 n)}+s_{(2 n-2,2)}+\cdots$
- $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E \leftrightarrow s_{(n)} \circ s_{(2)}=\sum_{\lambda \in \operatorname{Par}(n)} s_{2 \lambda}$
- Hence FC is true when $m=2$ and all n
- These are the only multiplicity-free Foulkes characters for $m n \geq 18$ (Saxl, 1980, W 2009, Godsil-Meagher 2010)

Progress on Foulkes' Conjecture: $m \leq n$

- True for $m=3$: Thrall (1942), Dent-Siemons (2000, symmetric group)
- True for $m+n \leq 17$: Mueller-Neunhoffer (2005);
- Kimoto-Lee (2019): explicit highest weight vectors for Sym^{3} Sym $^{n} E$;
- True for $m=4$: McKay (2008): the obvious map $\mathbb{C} \Omega^{\left(n^{4}\right)} \rightarrow \mathbb{C} \Omega^{\left(4^{n}\right)}$, proposed by Howe (1987), is injective;
- The obvious map $\mathbb{C} \Omega^{\left(5^{5}\right)} \rightarrow \mathbb{C} \Omega^{\left(5^{5}\right)}$ is not injective: Mueller-Neunhoffer (2005);
- True for $m+n \leq 19$: Evseev-Paget-W (2014);
- True for $m=5$: Cheung-Ikenmeyer-Mkrtchyan (2015)

Too easy?

Problem (Stanley Problem 9)

Find a combinatorial rule expressing $s_{(n)} \circ s_{(m)}$ as a non-negative integral linear combination of Schur functions.

Foulkes' Conjecture for $m=7, n=8$
 Logarithms of multiplicities

Foulkes' Conjecture for $m=7, n=8$

Logarithmic differences in multiplicities: for big dots, smaller multiplicity is 0 .

