Stability of plethysms of symmetric functions

Mark Wildon

- Royal Holloway, University of London
- Heilbronn Institute for Mathematical Research, Bristol University

Singapore December 2022

Outline

§1 Motivation: the Wronskian isomorphism
§2 Decomposition numbers for $S_{2 n}$ from $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E$
§3 Polynomial representations and plethysms of Schur functions
§4 Maximal summands in plethysms
§5 Plethysm stability
§1 Motivation: the Wronskian isomorphism
Let V be a vector space.
$\mathrm{Sym}^{2} V=V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle$

$$
=\langle v w: v \in V, w \in V\rangle
$$

- $\Lambda^{2} V=V^{\otimes 2} /\langle v \otimes v: v \in V\rangle$

$$
=\langle v \wedge w: v \in V, w \in V\rangle
$$

§1 Motivation: the Wronskian isomorphism

Let V be a vector space.

$$
\begin{aligned}
\operatorname{Sym}^{2} V & =V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle \\
& =\langle v w: v \in V, w \in V\rangle \\
\Lambda^{2} V & =V^{\otimes 2} /\langle v \otimes v: v \in V\rangle \\
= & \langle v \wedge w: v \in V, w \in V\rangle
\end{aligned}
$$

Observation. Sym $^{2} \mathbb{C}^{d}$ and $\bigwedge^{2} \mathbb{C}^{d+1}$ both have dimension $\binom{d+1}{2}$.

- Proof. If v_{1}, \ldots, v_{d} is a basis for \mathbb{C}^{d} then $\mathrm{Sym}^{2} \mathbb{C}^{d}$ has basis $v_{1}^{2}, \ldots, v_{d}^{2}, v_{1} v_{2}, \ldots, v_{d-1} v_{d}$, of size $d+\binom{d}{2}$.
 natural isomorphism between these vector spaces?

§1 Motivation: the Wronskian isomorphism

Let V be a vector space.

$$
\begin{aligned}
\operatorname{Sym}^{2} V & =V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle \\
& =\langle v w: v \in V, w \in V\rangle \\
\Lambda^{2} V & =V^{\otimes 2} /\langle v \otimes v: v \in V\rangle \\
= & \langle v \wedge w: v \in V, w \in V\rangle
\end{aligned}
$$

Observation. $\operatorname{Sym}^{2} \mathbb{C}^{d}$ and $\bigwedge^{2} \mathbb{C}^{d+1}$ both have dimension $\binom{d+1}{2}$.

- Proof. If v_{1}, \ldots, v_{d} is a basis for \mathbb{C}^{d} then $\mathrm{Sym}^{2} \mathbb{C}^{d}$ has basis $v_{1}^{2}, \ldots, v_{d}^{2}, v_{1} v_{2}, \ldots, v_{d-1} v_{d}$, of size $d+\binom{d}{2}$.
 natural isomorphism between these vector spaces?

Answer. Yes!

§1 Motivation: the Wronskian isomorphism

Let V be a vector space.

$$
\begin{aligned}
\operatorname{Sym}^{2} V & =V^{\otimes 2} /\langle v \otimes w-w \otimes v: v, w \in V\rangle \\
& =\langle v w: v \in V, w \in V\rangle \\
\Lambda^{2} V & =V^{\otimes 2} /\langle v \otimes v: v \in V\rangle \\
& =\langle v \wedge w: v \in V, w \in V\rangle
\end{aligned}
$$

Observation. Sym ${ }^{2} \mathbb{C}^{d}$ and $\bigwedge^{2} \mathbb{C}^{d+1}$ both have dimension $\binom{d+1}{2}$.

- Proof. If v_{1}, \ldots, v_{d} is a basis for \mathbb{C}^{d} then $\mathrm{Sym}^{2} \mathbb{C}^{d}$ has basis $v_{1}^{2}, \ldots, v_{d}^{2}, v_{1} v_{2}, \ldots, v_{d-1} v_{d}$, of size $d+\binom{d}{2}$.
 natural isomorphism between these vector spaces?

Answer. Yes! Let E be the 2-dimensional natural representation of $\mathrm{SL}_{2}(\mathbb{C})$. Then $\operatorname{Sym}^{d-1} E$ is d-dimensional and

$$
\operatorname{Sym}^{2} \operatorname{Sym}^{d-1} E \cong_{\mathrm{SL}_{2}(\mathbb{C})} \bigwedge^{2} \operatorname{Sym}^{d} E
$$

§1 Motivation: the Wronskian isomorphism Are there nice isomorphisms $\mathrm{S}^{2}\left(k^{n}\right) \cong \Lambda^{2}\left(k^{n+1}\right)$?

Asked 1 year, 1 month ago Active 1 year, 1 month ago Viewed 349 times

This might be forced to migrate to math.SE but let me still risk it.
The spaces $\mathrm{S}^{2}\left(k^{n}\right)$ and $\Lambda^{2}\left(k^{n+1}\right)$ from the title have equal dimensions. Is there a natural isomorphism between them?
asked Jan 15 '19 at 9:45

$13.9 k \cdot 3 \cdot 50-125$

Let E be a 2-dimensional k-vector space. The Wronksian isomorphism is an isomorphism of $\operatorname{SL}(\boldsymbol{E})$ modules $\bigwedge^{m} \mathrm{~S}^{m+r-1}(E) \cong \mathrm{S}^{m} \mathrm{~S}^{r}(E)$. It is easiest to deduce it from the corresponding identity in 19 symmetric functions (specialized to 1 and q), but it can also be defined explicitly: see for example Section 2.5 of this paper of Abdesselam and Chipalkatti.

In particular, identifying $\mathrm{S}^{n}(\boldsymbol{E})$ with the homogeneous polynomial functions on E of degree n, their definition becomes the map $\wedge^{2} S^{n}(E) \rightarrow S^{2} S^{n-1}(E)$ defined by

$$
f \wedge g \mapsto \frac{\partial f}{\partial X} \frac{\partial g}{\partial Y}-\frac{\partial f}{\partial Y} \frac{\partial g}{\partial X}
$$

Now $\mathrm{S}^{n}(E) \cong k^{n+1}$ and $\mathrm{S}^{n-1}(E) \cong k^{n}$, so we have the required isomorphism $\mathrm{S}^{2} k^{n} \cong \wedge^{2} k^{n+1}$.

Action of $\mathrm{SL}_{2}(F)$ on $\bigwedge^{2} \operatorname{Sym}^{2} E$ where $E=\langle v, w\rangle$

$$
\begin{aligned}
\left.\begin{array}{rl}
v & w \\
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \beta^{2} \gamma \\
-\alpha \gamma^{2} \delta+\beta \gamma^{3} & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\alpha \gamma^{2} \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} & -\beta^{2} & 2 \alpha \beta \\
-\gamma^{2} & \delta^{2} & -2 \gamma \delta \\
\alpha \gamma & -\beta \delta & \alpha \delta+\beta \gamma
\end{array}\right)
\end{aligned}
$$

Action of $\mathrm{SL}_{2}(F)$ on $\bigwedge^{2} \operatorname{Sym}^{2} E$ where $E=\langle v, w\rangle$

$$
\begin{aligned}
\left.\begin{array}{rl}
v & w \\
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \beta^{2} \gamma \\
-\alpha \gamma^{2} \delta+\beta \gamma^{3} & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\alpha \gamma^{2} \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} & -\beta^{2} & 2 \alpha \beta \\
-\gamma^{2} & \delta^{2} & -2 \gamma \delta \\
\alpha \gamma & -\beta \delta & \alpha \delta+\beta \gamma
\end{array}\right)
\end{aligned}
$$

Action of $\mathrm{SL}_{2}(F)$ on $\bigwedge^{2} \operatorname{Sym}^{2} E$ where $E=\langle v, w\rangle$

$$
\begin{aligned}
\left.\begin{array}{rl}
v & w \\
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto & \longmapsto\left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \beta^{2} \gamma \\
-\alpha \gamma^{2} \delta+\beta \gamma^{3} & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\alpha \gamma^{2} \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & v w \wedge w^{2} & v^{2} \wedge w^{2} \\
\alpha^{2} & \beta^{2} & 2 \alpha \beta \\
\gamma^{2} & \delta^{2} & 2 \gamma \delta \\
\alpha \gamma & \beta \delta & \alpha \delta+\beta \gamma
\end{array}\right)
\end{aligned}
$$

- Even after the sign flip, this is not the matrix for $\operatorname{Sym}^{2} E$.

Action of $\mathrm{SL}_{2}(F)$ on $\bigwedge^{2} \operatorname{Sym}^{2} E$ where $E=\langle v, w\rangle$

$$
\begin{aligned}
\left.\begin{array}{rl}
v & w \\
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto & \longmapsto\left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \beta^{2} \gamma \\
-\alpha \gamma^{2} \delta+\beta \gamma^{3} & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\alpha \gamma^{2} \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & v w \wedge w^{2} & v^{2} \wedge w^{2} \\
\alpha^{2} & \beta^{2} & 2 \alpha \beta \\
\gamma^{2} & \delta^{2} & 2 \gamma \delta \\
\alpha \gamma & \beta \delta & \alpha \delta+\beta \gamma
\end{array}\right)
\end{aligned}
$$

- Even after the sign flip, this is not the matrix for $\operatorname{Sym}^{2} E$. The matrices are not even conjugate if char $F=2$

Action of $\mathrm{SL}_{2}(F)$ on $\bigwedge^{2} \operatorname{Sym}^{2} E$ where $E=\langle v, w\rangle$

$$
\begin{aligned}
\left.\begin{array}{rl}
v & w \\
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \longmapsto & \longmapsto\left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{3} \delta-\alpha^{2} \beta \gamma & \alpha \beta^{2} \delta-\alpha \beta^{2} \gamma & 2 \alpha^{2} \beta \delta-2 \alpha \beta^{2} \gamma \\
-\alpha \gamma^{2} \delta+\beta \gamma^{3} & \alpha \delta^{3}-\beta \gamma \delta^{2} & 2 \beta \gamma^{2} \delta-2 \alpha \gamma \delta^{2} \\
\alpha^{2} \gamma \delta-\alpha \gamma^{2} \beta & \beta^{2} \gamma \delta-\alpha \beta \delta^{2} & \alpha^{2} \delta^{2}-\beta^{2} \gamma^{2}
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & w^{2} \wedge v w & v^{2} \wedge w^{2} \\
\alpha^{2} \Delta & -\beta^{2} \Delta & 2 \alpha \beta \Delta \\
-\gamma^{2} \Delta & \delta^{2} \Delta & -2 \gamma \delta \Delta \\
\alpha \gamma \Delta & -\beta \delta \Delta & (\alpha \delta+\beta \gamma) \Delta
\end{array}\right) \\
= & \left(\begin{array}{ccc}
v^{2} \wedge v w & v w \wedge w^{2} & v^{2} \wedge w^{2} \\
\alpha^{2} & \beta^{2} & 2 \alpha \beta \\
\gamma^{2} & \delta^{2} & 2 \gamma \delta \\
\alpha \gamma & \beta \delta & \alpha \delta+\beta \gamma
\end{array}\right)
\end{aligned}
$$

- Even after the sign flip, this is not the matrix for $\operatorname{Sym}^{2} E$. The matrices are not even conjugate if char $F=2$! Instead it is the matrix for $\operatorname{Sym}_{2} E=\langle v \otimes v, w \otimes w, v \otimes w+w \otimes v\rangle$
- Thus $\left(\operatorname{Sym}^{2} E\right)^{\star} \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{2} \operatorname{Sym}^{2} E$ and the duality is critical.

Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)
Let F be any field. Let E be the 2-dimensional natural representation of $\mathrm{SL}_{2}(F)$. There is an explicit isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Here $\operatorname{Sym}_{n} V$ is the invariant subspace of $V^{\otimes n}$ under the permutation action of S_{r} on tensors and $\operatorname{Sym}^{n} V$ is the usual quotient of $V^{\otimes n}$.

Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E be the 2-dimensional natural representation of $\mathrm{SL}_{2}(F)$. There is an explicit isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Here $\operatorname{Sym}_{n} V$ is the invariant subspace of $V^{\otimes n}$ under the permutation action of S_{r} on tensors and $\operatorname{Sym}^{n} V$ is the usual quotient of $V^{\otimes n}$.

As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over \mathbb{C}, McDowell-W 2020)

Let F be any field. Let $m, \ell \in \mathbb{N}$ and let E be the natural 2-dimensional representation of $\mathrm{GL}_{2}(F)$. Then

$$
\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \cong \operatorname{Sym}^{\ell} \operatorname{Sym}_{m} E
$$

by an explicit map.

Duality and the modular Wronskian isomorphism

Theorem (McDowell-W 2020)

Let F be any field. Let E be the 2-dimensional natural representation of $\mathrm{SL}_{2}(F)$. There is an explicit isomorphism

$$
\operatorname{Sym}_{r} \operatorname{Sym}^{\ell} E \cong_{\mathrm{SL}_{2}(F)} \bigwedge^{r} \operatorname{Sym}^{r+\ell-1} E
$$

Here $\operatorname{Sym}_{n} V$ is the invariant subspace of $V^{\otimes n}$ under the permutation action of S_{r} on tensors and $\operatorname{Sym}^{n} V$ is the usual quotient of $V^{\otimes n}$.

As a corollary we obtain a modular version of Hermite reciprocity.

Corollary (Hermite 1854 over \mathbb{C}, McDowell-W 2020)

Let F be any field. Let $m, \ell \in \mathbb{N}$ and let E be the natural 2-dimensional representation of $\mathrm{GL}_{2}(F)$. Then

$$
\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \cong \operatorname{Sym}^{\ell} \operatorname{Sym}_{m} E
$$

by an explicit map.
Question. What other classical $\mathrm{SL}_{2}(\mathbb{C})$-isomorphisms have modular analogues?

§2 Decomposition numbers for $S_{2 n}$ from $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E$

Problem (Decomposition numbers)

Determine the composition factors of Specht modules over fields of prime characteristic.
For instance in characteristic 3 the Specht module $\mathrm{Sp}^{(3,3)}$ has composition factors labelled by $(5,1)$ and $(3,3)$.

	©	$\stackrel{\underset{\sim}{5}}{\stackrel{\rightharpoonup}{5}}$	$\underset{ \pm}{\underset{ \pm}{*}}$	$\stackrel{\tilde{m}}{\underset{\sim}{n}}$	$\xrightarrow{\text { İ }}$	$\stackrel{\text { - }}{\text { - }}$	$\xrightarrow{7}$
(6)	1						
$(5,1)$	1	1					
$(4,2)$.	.	1				
$(3,3)$.	1	.	1			
$(4,1,1)$	-	1	.	.	1		
$(3,2,1)$	1	1	.	1	1	1	
(2, 2, 1, 1)		1
$(2,2,2)$	1	.	-	.	-	1	.
(3, 1, 1, 1)	.	.	-	\cdot	1	1	.
(2, 1, 1, 1, 1)	.	.	.	1	.	1	.
(1, 1, 1, 1, 1, 1)	.	.	-	1	.	.	

Decomposition matrix of principal block of $\mathbb{F}_{2} S_{10}$

$$
\begin{aligned}
& \text { (10) } 1 \\
& (9,1) \quad 1 \quad 1 \\
& (8,2) \quad 1 \quad 1 \quad 1 \\
& (7,3) \quad 1 \quad 1 \quad 1 \\
& (6,4) \text {. } 1 \\
& \begin{array}{llllllll}
(6,3,1) & 1 & . & 2 & 1 & 1 & 1 & \\
(5,3,2) & 2 & 1 & 1 & \cdot & 1 & 1 & 1
\end{array} \\
& (5,5) \text {. } 1 \text {. } 1 \\
& (8,1,1) \quad 2 \quad 1 \quad 1 \\
& (6,2,2) \quad 1 \quad 1 \quad . \quad 1 \quad . \\
& (4,4,2) \quad 2 \quad 1 \quad 1 \quad \cdot \quad 1 \quad 1 \\
& (4,3,3) \quad 2 \quad 1 \quad . \quad . \quad . \quad . \quad 1 \\
& (7,1,1,1) \quad 2 \quad 1 \quad 1 \quad 1 \\
& \begin{array}{llllllll}
(6,2,1) & 2 & 1 & 3 & 1 & 1 & 1 & . \\
(5,3,1,1) & 3 & 1 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& (4,4,1,1) \quad 2 \quad 1 \quad 1 \quad 1 \quad 1 \quad \cdot \quad 1 \\
& \begin{array}{rlllllll}
(5,2,2,1) & 3 & 1 & 2 & 1 & 1 & 1 & 1 \\
(6,1,1,1,1) & 2 & 1 & 2 & 1 & 1 & . & .
\end{array}
\end{aligned}
$$

$\operatorname{Sym}^{n} \operatorname{Sym}^{2} E$ and even partitions

Let $E=\left\langle e_{1}, \ldots, e_{d}\right\rangle$ be the d-dimensional natural representation of $\mathrm{GL}_{n}(\mathbb{C})$. For $n \in \mathbb{N}$,

$$
\operatorname{Sym}^{n} \operatorname{Sym}^{2} E=\sum_{\substack{\lambda \in \operatorname{Par}(n) \\ \ell(\lambda) \leq d}} \nabla^{2 \lambda}(E)
$$

where 2λ is the even partition obtained by doubling each part of λ and $\nabla^{2 \lambda}(E)$ is an irreducible $\mathrm{GL}_{n}(\mathbb{C})$-representation. Equivalently

$$
\mathbb{C} \uparrow_{S_{2} \backslash S_{n}}^{S_{2 n}}=\bigoplus_{\lambda \in \operatorname{Par}(n)} \mathrm{Sp}^{2 \lambda}
$$

Example. Take $d=4$. Let $\mathcal{F}(V)$ be the $(1,1,1,1)$-weight space of V.

$$
\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E \xrightarrow{\mathcal{F}}\left\langle\begin{array}{ll}
e_{1} e_{2} \otimes e_{3} e_{4} & e_{3} e_{4} \otimes e_{1} e_{2} \\
e_{1} e_{3} \otimes e_{2} e_{4} & e_{2} e_{4} \otimes e_{1} e_{3} \\
e_{1} e_{4} \otimes e_{2} e_{3} & e_{2} e_{3} \otimes e_{1} e_{4}
\end{array}\right\rangle \xrightarrow{\underset{\mathrm{Sp}^{(4)} \oplus \mathrm{Sp}^{(3,1)} \oplus \mathrm{Sp}^{(2,2)}}{\cong}} \mathbb{C} \uparrow_{4}^{S_{4}} \times S_{2}
$$

$\operatorname{Sym}^{n} \operatorname{Sym}^{2} E$ and even partitions

Let $E=\left\langle e_{1}, \ldots, e_{d}\right\rangle$ be the d-dimensional natural representation of $\mathrm{GL}_{n}(\mathbb{C})$. For $n \in \mathbb{N}$,

$$
\operatorname{Sym}^{n} \operatorname{Sym}^{2} E=\sum_{\substack{\lambda \in \operatorname{Par}(n) \\ \ell(\lambda) \leq d}} \nabla^{2 \lambda}(E)
$$

where 2λ is the even partition obtained by doubling each part of λ and $\nabla^{2 \lambda}(E)$ is an irreducible $\mathrm{GL}_{n}(\mathbb{C})$-representation. Equivalently

$$
\mathbb{C} \uparrow_{S_{2} \backslash S_{n}}^{S_{2 n}}=\bigoplus_{\lambda \in \operatorname{Par}(n)} \mathrm{Sp}^{2 \lambda}
$$

Example. Take $d=4$. Let $\mathcal{F}(V)$ be the $(1,1,1,1)$-weight space of V.

From $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E=\oplus \nabla^{2 \lambda}(E)$ to decomposition numbers

Given a p-core γ, let $\mathcal{E}(\gamma)$ be the set of even partitions obtained from γ by adding the least possible number of disjoint p-hooks.

- For example if $p=3$ then $\mathcal{E}(\square)=\{(6,2),(4,4),(4,2,2)\}$

Theorem (Giannelli-W 2014)

Let p be an odd prime and let γ be a p-core. Let $\lambda \in \mathcal{E}(\gamma)$ be greatest in the lexicographic order. The column of the decomposition matrix labelled by λ has entries 0 and 1 . Moreover its non-zero entries are in rows labelled by $E(\gamma)$

Idea of proof. Study the reduction modulo p of the symmetric group module $\mathbb{C} \uparrow_{S_{2} 2 S_{n}}^{S_{2 n}}$, corresponding to $\mathrm{Sym}^{n} \mathrm{Sym}^{2} E$.

From $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E=\oplus \nabla^{2 \lambda}(E)$ to decomposition numbers

Given a p-core γ, let $\mathcal{E}(\gamma)$ be the set of even partitions obtained from γ by adding the least possible number of disjoint p-hooks.

- For example if $p=3$ then $\mathcal{E}(\square)=\{(6,2),(4,4),(4,2,2)\}$

Theorem (Giannelli-W 2014)

Let p be an odd prime and let γ be a p-core. Let $\lambda \in \mathcal{E}(\gamma)$ be greatest in the lexicographic order. The column of the decomposition matrix labelled by λ has entries 0 and 1 . Moreover its non-zero entries are in rows labelled by $E(\gamma)$
Idea of proof. Study the reduction modulo p of the symmetric group module $\mathbb{C} \uparrow{ }_{S_{2} 2 S_{n}}^{S_{2 n}}$, corresponding to $\mathrm{Sym}^{n} \mathrm{Sym}^{2} E$.

- Main step: show that the only summands of $\mathbb{F}_{p} \uparrow_{S_{2} / S_{n}}^{S_{2 n}}$ in the block of $S_{2 n}$ with p-core γ are projective.
- From the decomposition of $\operatorname{Sym}^{n} \operatorname{Sym}^{2} E$, each projective lifts to a direct sum of Specht modules over \mathbb{C} labelled by even partitions.
- By Brauer reciprocity we get information about columns of decomposition matrix.

Example: 3-block of S_{12} with core $(3,1,1)$

Example: 3-block of S_{12} with core $(3,1,1)$

Example: 3-block of S_{12} with core $(3,1,1)$

Example: 3-block of S_{12} with core $(3,1,1)$

$\left(12,1^{2}\right)=\langle 2\rangle$	1						
$(9,4,1)=\langle 2,2\rangle$	11						
$(9,3,2)=\langle 2,1\rangle$	$2 \begin{array}{lll}2 & 1 & 1\end{array}$						
$(8,4,2)=\langle 1\rangle$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$						
$\left(6^{2}, 2\right)=\langle 1,2\rangle$	1	1					
$\left(6,4^{4}\right)=\langle 1,2,2\rangle$	11	1	1				
$\left(6,4,2^{2}\right)=\langle 2,2,2\rangle$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	1			
$\left(6,3,2^{2}, 1\right)=\langle 1,1,2\rangle$	$\begin{array}{lll}2 & 1 & 1\end{array}$			1	1		
$\left(5,4,2^{2}, 1\right)=\langle 1,1\rangle$	$\begin{array}{lll}1 & 1 & 1\end{array}$	1	1	1	1	1	
$\left(4^{2}, 2^{2}, 1^{2}\right)=\langle 3\rangle$	11	1	1		1	1	1
$\left(9,1^{5}\right)=\langle 2,3\rangle$	1						
$\left(6,4,1^{4}\right)=\langle 2,2,3\rangle$				1			
$\left(6,3,2,1^{3}\right)=\langle 1,2,3\rangle$	1		1	1	1		
$\left(6,2^{3}, 1^{2}\right)=\langle 3,2\rangle$					1		
$\left(6,1^{8}\right)=\langle 2,3,3\rangle$			1				
$\left(5,4,2,1^{3}\right)=\langle 1,3\rangle$		2	1	1	1	1	
$\left(3^{4}, 1^{2}\right)=\langle 3,1\rangle$	1		1				1
$\left(3^{2}, 2^{4}\right)=\langle 1,1,3\rangle$	1						1
$\left(3^{2}, 2^{2}, 1^{4}\right)=\langle 1,1,1\rangle$		1	1			1	1
$\left(3^{2}, 2,1^{6}\right)=\langle 1,3,3\rangle$		2	1			1	
$\left(3,2^{3}, 1^{5}\right)=\langle 3,3\rangle$		1				1	
$\left(3,1^{11}\right)=\langle 3,3,3\rangle$		1					

Example: 3-block of S_{12} with core $(3,1,1)$

$\left(12,1^{2}\right)=\langle 2\rangle$	1						
$(9,4,1)=\langle 2,2\rangle$	11						
$(9,3,2)=\langle 2,1\rangle$	$2 \begin{array}{lll}2 & 1 & 1\end{array}$						
$(8,4,2)=\langle 1\rangle$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$						
$\left(6^{2}, 2\right)=\langle 1,2\rangle$	1	1					
$\left(6,4^{4}\right)=\langle 1,2,2\rangle$	11	1	1				
$\left(6,4,2^{2}\right)=\langle 2,2,2\rangle$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	1			
$\left(6,3,2^{2}, 1\right)=\langle 1,1,2\rangle$	$\begin{array}{lll}2 & 1 & 1\end{array}$			1	1		
$\left(5,4,2^{2}, 1\right)=\langle 1,1\rangle$	$\begin{array}{lll}1 & 1 & 1\end{array}$	1	1	1	1	1	
$\left(4^{2}, 2^{2}, 1^{2}\right)=\langle 3\rangle$	11	1	1		1	1	1
$\left(9,1^{5}\right)=\langle 2,3\rangle$	1						
$\left(6,4,1^{4}\right)=\langle 2,2,3\rangle$				1			
$\left(6,3,2,1^{3}\right)=\langle 1,2,3\rangle$	1		1	1	1		
$\left(6,2^{3}, 1^{2}\right)=\langle 3,2\rangle$					1		
$\left(6,1^{8}\right)=\langle 2,3,3\rangle$			1				
$\left(5,4,2,1^{3}\right)=\langle 1,3\rangle$		2	1	1	1	1	
$\left(3^{4}, 1^{2}\right)=\langle 3,1\rangle$	1		1				1
$\left(3^{2}, 2^{4}\right)=\langle 1,1,3\rangle$	1						1
$\left(3^{2}, 2^{2}, 1^{4}\right)=\langle 1,1,1\rangle$		1	1			1	1
$\left(3^{2}, 2,1^{6}\right)=\langle 1,3,3\rangle$		2	1			1	
$\left(3,2^{3}, 1^{5}\right)=\langle 3,3\rangle$		1				1	
$\left(3,1^{11}\right)=\langle 3,3,3\rangle$		1					

§3 Polynomial representations and plethysms of Schur functions

 - Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus$?
§3 Polynomial representations and plethysms of Schur functions
- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

Here $\nabla^{(2,1)}(E)$ has a basis $F(t)$ for t a semistandard tableaux of shape $(2,1)$ with entries from $\{1,2,3\}$:

$$
F\left(\begin{array}{|l|}
\hline a
\end{array}\right)
$$

You might also know it as the adjoint representation of the Lie algebra $\mathrm{sl}_{3}(\mathbb{C})$.

§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\operatorname{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

Now take $E=\left\langle e_{1}, e_{2}\right\rangle \cong \mathbb{C}^{2}$

- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2} \operatorname{Sym}^{2} E$ with basis $\left(e_{1}^{2}\right)\left(e_{1}^{2}\right),\left(e_{1}^{2}\right)\left(e_{2}^{2}\right),\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{2}^{2}\right)\left(e_{2}^{2}\right),\left(e_{2}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{1} e_{2}\right)\left(e_{1} e_{2}\right)$

§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \bigwedge^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

Now take $E=\left\langle e_{1}, e_{2}\right\rangle \cong \mathbb{C}^{2}$

- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2} \operatorname{Sym}^{2} E$ with basis $\left(e_{1}^{2}\right)\left(e_{1}^{2}\right),\left(e_{1}^{2}\right)\left(e_{2}^{2}\right),\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{2}^{2}\right)\left(e_{2}^{2}\right),\left(e_{2}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{1} e_{2}\right)\left(e_{1} e_{2}\right)$
- Symmetric functions
- $s_{(2)}\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2}+y_{2}^{2}+y_{3}^{3}+y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}$

§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \Lambda^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

Now take $E=\left\langle e_{1}, e_{2}\right\rangle \cong \mathbb{C}^{2}$

- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2} \operatorname{Sym}^{2} E$ with basis $\left(e_{1}^{2}\right)\left(e_{1}^{2}\right),\left(e_{1}^{2}\right)\left(e_{2}^{2}\right),\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{2}^{2}\right)\left(e_{2}^{2}\right),\left(e_{2}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{1} e_{2}\right)\left(e_{1} e_{2}\right)$
- Symmetric functions
- $s_{(2)}\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2}+y_{2}^{2}+y_{3}^{3}+y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}$

$$
=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+\cdots+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

§3 Polynomial representations and plethysms of Schur functions

- Polynomial representations of $\mathrm{GL}(E)$ with $E=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cong \mathbb{C}^{3}$.
- $E \otimes E \cong \operatorname{Sym}^{2} E \oplus \bigwedge^{2} E$
- $E \otimes E \otimes E \cong \operatorname{Sym}^{3} E \oplus \bigwedge^{3} E \oplus \nabla^{(2,1)} E \oplus \nabla^{(2,1)} E$

Now take $E=\left\langle e_{1}, e_{2}\right\rangle \cong \mathbb{C}^{2}$

- Tensor product: $\operatorname{Sym}^{2} E \otimes \operatorname{Sym}^{2} E$
- Symmetric power of symmetric power: $\operatorname{Sym}^{2} \operatorname{Sym}^{2} E$ with basis $\left(e_{1}^{2}\right)\left(e_{1}^{2}\right),\left(e_{1}^{2}\right)\left(e_{2}^{2}\right),\left(e_{1}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{2}^{2}\right)\left(e_{2}^{2}\right),\left(e_{2}^{2}\right)\left(e_{1} e_{2}\right),\left(e_{1} e_{2}\right)\left(e_{1} e_{2}\right)$
- Symmetric functions
- $s_{(2)}\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2}+y_{2}^{2}+y_{3}^{3}+y_{1} y_{2}+y_{1} y_{3}+y_{2} y_{3}$

$$
=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+\cdots+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

- Multiplication: $s_{(2)}\left(x_{1}, x_{2}\right)^{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}\right)^{2}$
- Evaluate $s_{(2)}\left(y_{1}, y_{2}, y_{3}\right)$ at monomials in $s_{(2)}\left(x_{1}, x_{2}\right)$ to get $s_{(2)}\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right)=\left(x_{1}^{2}\right)\left(x_{1}^{2}\right)+\left(x_{1}^{2}\right)\left(x_{2}^{2}\right)+\left(x_{1}^{2}\right)\left(x_{1} x_{2}\right)+\cdots+\left(x_{1} x_{2}\right)\left(x_{1} x_{2}\right)$.

This is the plethysm $\left(s_{(2)} \circ s_{(2)}\right)\left(x_{1}, x_{2}\right)$, obtained by evaluating $s_{(2)}$ at the monomials $x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$ in $s_{(2)}\left(x_{1}, x_{2}\right)$.

Combinatorial definition of plethysm

Given a tableau t let $x^{t}=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots$ where a_{i} is the number of entries of t equal to i. We say t has weight $\left(a_{1}, a_{2}, \ldots\right)$.

Definition (Schur function)

Let μ be a partition. The Schur function s_{μ} is the generating function enumerating semistandard tableaux of shape μ by weight:

$$
s_{\mu}=\sum_{t \in \operatorname{SSYT}(\mu)} x^{t}
$$

For instance

$$
\begin{aligned}
s_{(2)}\left(x_{1}, x_{2}, \ldots\right) & =x^{\boxed{111}}+x^{\sqrt{112}}+x^{[2]}+x^{\boxed{113}}+\cdots \\
& =x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\cdots
\end{aligned}
$$

Combinatorial definition of plethysm

Given a tableau t let $x^{t}=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots$ where a_{i} is the number of entries of t equal to i. We say t has weight $\left(a_{1}, a_{2}, \ldots\right)$.

Definition (Schur function)

Let μ be a partition. The Schur function s_{μ} is the generating function enumerating semistandard tableaux of shape μ by weight:

$$
s_{\mu}=\sum_{t \in \operatorname{SSYT}(\mu)} x^{t}
$$

For instance

$$
\begin{aligned}
s_{(2)}\left(x_{1}, x_{2}, \ldots\right) & =x^{\sqrt{111}}+x^{\sqrt{1 \mid 2}}+x^{\sqrt[222]{2 / 2}}+x^{\sqrt{1] 3}}+\cdots \\
& =x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+\cdots
\end{aligned}
$$

Equivalently, $s_{\mu}\left(x_{1}, \ldots, x_{d}\right)$ is the trace of $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ acting on $\nabla^{\mu}(E)$. For instance $s_{(n)}\left(x_{1}, \ldots, x_{d}\right)$ is the character of $\operatorname{Sym}^{n} E$.
Definition (Plethysm of Schur functions)
Let μ and ν be partitions. Let $\operatorname{SSYT}(\mu)=\{t(1), t(2), \ldots\}$. The plethystic product of s_{ν} and s_{μ} is $s_{\nu} \circ s_{\mu}=s_{\nu}\left(x^{t(1)}, x^{t(2)}, \ldots\right)$.

By definition of the Hall inner product, $\left\langle f, s_{\lambda}\right\rangle$ is the multiplicity of s_{λ} as a summand of the symmetric function f.
Problem (Stanley's Problem 9, 2000)
Find a combinatorial interpretation of the plethysm coefficients $\left\langle s_{(n)} \circ s_{(m)}, s_{\lambda}\right\rangle$ that makes it clear they are non-negative.

Equivalently, find a combinatorial interpretation for the multiplicity of the irreducible $\mathrm{GL}_{d}(\mathbb{C})$-module $\nabla^{\lambda}(E)$ in $\operatorname{Sym}^{n} \operatorname{Sym}^{m} E$.

§4: Maximal summands in plethysms

A partition λ dominates a partition κ if the Young diagram of κ can be obtained from the Young diagram of λ by repeatedly moving boxes downwards. For instance

Quiz. Choose partitions κ and λ of n (a very large number) uniformly at random. What, roughly, is the chance that κ and λ are comparable in the dominance order?

§4: Maximal summands in plethysms

A partition λ dominates a partition κ if the Young diagram of κ can be obtained from the Young diagram of λ by repeatedly moving boxes downwards. For instance

Quiz. Choose partitions κ and λ of n (a very large number) uniformly at random. What, roughly, is the chance that κ and λ are comparable in the dominance order?
Answer. Asymptotically 0, by a theorem of Pittel (1997).

n	5	6	10	20	30	35
$p_{\text {comparable }}$	1	0.967	0.904	0.782	0.716	0.694

But no problem if you guessed something else: the convergence is very slow, and the small cases are misleading.

Most plethysms have many different maximal summands.
Extreme example: $s_{\left(1^{n}\right)} \circ s_{(2)}$. Let $n \in \mathbb{N}$. Given a partition α of n with distinct parts, let $2[\alpha]$ be the partition of $2 n$ with leading diagonal hook lengths $2 \alpha_{1}, 2 \alpha_{2}, \ldots$

The plethysm $s_{\left(1^{n}\right)} \circ s_{(2)}$ corresponding to $\bigwedge^{n} \operatorname{Sym}^{2} E$ is

$$
s_{\left(1^{n}\right)} \circ s_{2}=\sum_{\alpha \in \operatorname{Par}_{\text {distinct }(n)}} s_{2[\alpha]} .
$$

Most plethysms have many different maximal summands.
Extreme example: $s_{\left(1^{n}\right)} \circ s_{(2)}$. Let $n \in \mathbb{N}$. Given a partition α of n with distinct parts, let $2[\alpha]$ be the partition of $2 n$ with leading diagonal hook lengths $2 \alpha_{1}, 2 \alpha_{2}, \ldots$

The plethysm $s_{\left(1^{n}\right)} \circ s_{(2)}$ corresponding to $\bigwedge^{n} \operatorname{Sym}^{2} E$ is

$$
s_{\left(1^{n}\right)} \circ s_{2}=\sum_{\alpha \in \operatorname{Par}_{\text {distinct }(n)}} s_{2[\alpha]}
$$

For instance, if $n=6$ then

$$
s_{\left(1^{6}\right)} \circ s_{2}=s_{\left(7,1^{5}\right)}+s_{\left(6,3,1^{3}\right)}+s_{(5,4,2,1)}+s_{(4,4,4)}
$$

Most plethysms have many different maximal summands.
Extreme example: $s_{\left(1^{n}\right)} \circ s_{(2)}$. Let $n \in \mathbb{N}$. Given a partition α of n with distinct parts, let $2[\alpha]$ be the partition of $2 n$ with leading diagonal hook lengths $2 \alpha_{1}, 2 \alpha_{2}, \ldots$

The plethysm $s_{\left(1^{n}\right)} \circ s_{(2)}$ corresponding to $\bigwedge^{n} \operatorname{Sym}^{2} E$ is

$$
s_{\left(1^{n}\right)} \circ s_{2}=\sum_{\alpha \in \operatorname{Par}_{\text {distinct }(n)}} s_{2[\alpha]} .
$$

Exercise. Show that if $\alpha, \beta \in \operatorname{Par}_{\text {distinct }}(n)$ are different partitions then $2[\alpha]$ and $2[\beta]$ are incomparable.

Thus every constituent of $s_{\left(1^{n}\right)} \circ s_{(2)}$ is both maximal and minimal. All of them are determined by our theorem.

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.

A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.
Taking $m=2$ we get the decomposition of $s_{\left(1^{n}\right)} \circ s_{(2)}$. For $n=6$:

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.

A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.
Taking $m=2$ we get the decomposition of $s_{\left(1^{n}\right)} \circ s_{(2)}$. For $n=6$:

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.

A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.
Taking $m=2$ we get the decomposition of $s_{\left(1^{n}\right)} \circ s_{(2)}$. For $n=6$:

(7, 1, 1, 1, 1, 1)
$(6,3,1,1,1)$

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.

A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.
Taking $m=2$ we get the decomposition of $s_{\left(1^{n}\right)} \circ s_{(2)}$. For $n=6$:

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.

A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.
Taking $m=2$ we get the decomposition of $s_{\left(1^{n}\right)} \circ s_{(2)}$. For $n=6$:

Theorem (Paget-W 2018)

The maximal constituents of the plethysm $s_{\nu} \circ s_{\mu}$ are precisely the maximal weights of the plethystic semistandard tableaux of outer shape ν and inner shape μ.
A plethystic semistandard tableaux of outer shape (1^{n}) and inner shape (m) is the same as a set of n distinct m-multisets of \mathbb{N}, ordered by the majorization order.

- The 2018 proof uses the symmetric group.
- In 2020 with Melanie de Boeck we gave a shorter proof using polynomial representations of $\mathrm{GL}_{n}(\mathbb{C})$.
- Our recent work in 2022 gives a still shorter combinatorial proof, with an explicit 'gap' result on the separation between maximal and minimal summands.

§5: Plethysms stability

Theorem
Let γ be a partition, and let ($m n-|\gamma| ; \gamma$) denote the partition (mn-| $\mid, \gamma_{1}, \ldots, \gamma_{\ell}$). The plethysm coefficient

$$
\left\langle s_{(n)} \circ s_{(m)}, s_{(m n-|\gamma| ; \gamma)}\right\rangle
$$

is constant for all m and n sufficiently large.
Proved by

- Carré and Thibon (1992): vertex operators
- Brion (1993): dominant maps of algebraic varieties
- Manivel (1997): stable embeddings of varieties
- Bowman and Paget (2018): partition algebra
- Paget and W (2022): plethystic semistandard tableaux

§5: Plethysms stability

Theorem
Let γ be a partition, and let ($m n-|\gamma| ; \gamma$) denote the partition ($m n-|\gamma|, \gamma_{1}, \ldots, \gamma_{\ell}$). The plethysm coefficient

$$
\left\langle s_{(n)} \circ s_{(m)}, s_{(m n-|\gamma| ; \gamma)}\right\rangle
$$

is constant for all m and n sufficiently large.
Proved by

- Carré and Thibon (1992): vertex operators
- Brion (1993): dominant maps of algebraic varieties
- Manivel (1997): stable embeddings of varieties
- Bowman and Paget (2018): partition algebra
- Paget and W (2022): plethystic semistandard tableaux The Bowman-Paget proof is notable as the only one to give an explicit (if intricate) formula for the multiplicity that is clearly non-negative. This is a significant step towards the solution of Stanley's Problem 9.

Using combinatorial arguments with signed plethystic semistandard tableaux Paget and I have given unified proofs of every stability result in the literature we know about.
Here are three representative examples.
Update: three days after my talk Law and Okitani published Some stable plethysms arXiv:2214.06964. It has a generalization of their theorem (next slide). It is not yet clear if we can adapt our methods to prove it.

Using combinatorial arguments with signed plethystic semistandard tableaux Paget and I have given unified proofs of every stability result in the literature we know about.
Here are three representative examples.
Theorem (Brion 1993)
Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. Let $r \in \mathbb{N}$. The plethysm coefficient

$$
\left\langle s_{\nu} \circ s_{\mu+N\left(1^{r}\right)}, s_{\lambda+N\left(n^{r}\right)}\right\rangle
$$

is constant for all N sufficiently large, with an explicit bound.
Theorem (Paget-W 2022)
Let $\nu / \nu^{\star} \in \operatorname{SkewPar}(n), \mu / \mu^{\star} \in \operatorname{SkewPar}(m), \lambda \in \operatorname{Par}(m n)$. Let $r \in \mathbb{N}$. The plethysm coefficient

$$
\left\langle s_{\nu / \nu^{\star}} \circ s_{\mu+N\left(1^{r}\right) / \mu^{\star}}, s_{\lambda+N\left(n^{r}\right)}\right\rangle
$$

is constant for all N sufficiently large, with an explicit bound.

Theorem (Law-Okitani 2021: Proposition 5.3)
Let $\nu \in \operatorname{Par}(n)$ and $\lambda \in \operatorname{Par}(m n)$. The plethysm coefficient

$$
\left\langle s_{\nu \sqcup\left(1^{N}\right)} \circ s_{(2)}, s_{\lambda+(N) \sqcup\left(1^{N}\right)}\right\rangle
$$

is constant for N sufficiently large.
The generalization replacing 2 with an arbitrary $m \in \mathbb{N}$ and $\lambda+(N) \sqcup\left(1^{N}\right)$ with $\lambda+(m-1) N \sqcup\left(1^{N}\right)$ was announced at Oberwolfach in September 2022.

Our methods generalize the Law-Okitani result further, from (m) to an arbitrary rectangular partition. The proof requires signed plethystic semistandard tableaux with negative entries.

Theorem (Paget-W 2022)

Let $\nu \in \operatorname{Par}(n)$, let $a, b \in \mathbb{N}$ and let $\lambda \in \operatorname{Par}(a b n)$. The plethysm coefficient

$$
\left\langle s_{\nu \sqcup\left(1^{N}\right)} \circ s_{\left(a^{b}\right)}, s_{\lambda+N\left(a^{b-1}, a-1\right) \sqcup\left(1^{N}\right)}\right\rangle
$$

is constant for N sufficiently large, with an explicit bound on N.

Theorem (Brion 1993)

Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. The plethysm coefficient $\left\langle s_{\nu+(N)} \circ s_{\mu}, s_{\lambda+N} N_{\mu}\right\rangle$ is constant for N sufficiently large.

Theorem (Briand-Orrelana-Rosas 2014)

Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. Let r be the total number of semistandard tableaux of shape μ with entries from $\{1, \ldots, d\}$ and let $q=r|\nu| / d$. The plethysm coefficient

$$
\left\langle s_{\nu+N\left(1^{r}\right)} \circ s_{\mu}, s_{\lambda+N\left(q^{d}\right)}\right\rangle
$$

is constant for N sufficiently large.
Common generalization, by replacing the set of semistandard tableaux of shape μ with entries from $\{1, \ldots, d\}$ with certain maximal tableau families, such as

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array} \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline
\end{array}, \left.\begin{array}{|l|l|l|l|}
\hline 1 & 3 \\
\hline & 4 & 4 \\
\hline
\end{array} \right\rvert\, \begin{array}{|l|l|}
\hline 1 & 6 \\
\hline
\end{array}
$$

seen earlier. The family has size 1 for Brion, and size r for Briand-Orrelana-Rosas.

Theorem (Brion 1993)
Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. The plethysm
coefficient $\left\langle s_{\nu+(N)} \circ s_{\mu}, s_{\lambda+N} N_{\mu}\right\rangle$ is constant for N sufficiently large.
Theorem (Briand-Orrelana-Rosas 2014)
Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. Let r be the total number of semistandard tableaux of shape μ with entries from $\{1, \ldots, d\}$ and let $q=r|\nu| / d$. The plethysm coefficient

$$
\left\langle s_{\nu+N\left(1^{r}\right)} \circ s_{\mu}, s_{\lambda+N\left(q^{d}\right)}\right\rangle
$$

is constant for N sufficiently large.
Theorem (Paget-W 2022)
Let $\nu \in \operatorname{Par}(n), \mu \in \operatorname{Par}(m), \lambda \in \operatorname{Par}(m n)$. Let ω be the weight of a strongly maximal tableau family of size r. The plethysm coefficient

$$
\left\langle s_{\nu+N\left(1^{r}\right)} \circ s_{\mu}, s_{\lambda+N \omega}\right\rangle
$$

is constant for N sufficiently large, with an explicit bound on N.

Thank you! Any questions?

Thank you! Any questions?

