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Spot the prime. Spot the Grothendieck prime.
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Spot the prime. Spot the Grothendieck prime.
» 3| is prime
» 57 was, allegedly, given as an example of a prime by the great
mathematician Alexander Grothendieck.
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| is not a prime — says who!




| is not a prime —

Since we want unique factorization,and not 57 =3 x 19 =1 x3x 19=---
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2,3,5711,13,...,2003,2011, 2017, 2027, 2029, ...



2,3,5711,13,...,2003,2011, 2017, 2027, 2029, ..., 1000000007, ...



2,3,5711,13,...,2003,2011, 2017, 2027, 2029, ..., 1000000007, ...
» Does the sequence of primes ever stop!?
» Or maybe there are infinitely many primes?
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The first three primes are 2, 3, 5

2x3x5=30

2x3x541=3l

31 leaves remainder | when we divide it by 2, 3, 5
> 31 =15x2+1
> 31 =10x3+1
> 3l =6x5+1

But 31 is either prime or divisible by a prime

So 2, 3, 5 are not all the primes

The first six primes are 2, 3,5, 7, | I, I3
2x3x5x7x11x13=30030
2x3x5x7x 1l x13+1=23003I
30031 leaves remainder | when we divide it by 2, 3, 5,7,11,13.
> 30031 = 15015 x 2+ |
> 30031 = 10010 x 3+ |

» 30031 =2310 x I3+ 1
But 30031 is either prime or divisible by a prime (in fact 30031 = 59 x 209)
So02,3,5,7, |1, I3 are not all the primes
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Socrates: | think py, p2, ..., pr might be all the
primes

Euclid: Consider N =p| X pa X --- X pr + |
Socrates: If | must ...

Euclid: N leaves remainder | when divided by all

your primes

» Socrates: You are correct

» Euclid: But N is divisible by some
prime

» Socrates: Yes. So there is a prime

not in my list

» Euclid: Indeed. This shows there
are more than any finite number
of primes

» Socrates: You are correct




Consider the statement
P: ‘there are finitely many primes’
and its logical negation
—P: ‘there are more than any finite number of primes’.

Euclid proves —P by showing Socrates that if he assumes P then he is led to
a contraction. Therefore P is false, i.e. —P is true.



Consider the statement
P: ‘there are finitely many primes’
and its logical negation
—P: ‘there are more than any finite number of primes’.
Euclid proves —P by showing Socrates that if he assumes P then he is led to

a contraction. Therefore P is false, i.e. —P is true.

This differs subtly from ‘proof by contradiction’, where to prove a statement
Q, we show that —(Q leads to a contradiction, and so deduce —Q. In
ordinary mathematics, =—Q = Q, but intuitionists do not accept this
implication.
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A composition of a number n is a way to write 1. as a sum of natural numbers.
The compositions of 4 are

4 {4} @
341 (3,4} (3)

I +3 {1, 4} {n
2+2 (2,4} )
24141 0 (2,3,4 7 2,3)
| +2+ {1,3,4} (1,3}
|+ 142 {1,2,4} (1,2)
L+ 1+1+1 {1,234 {1,2,3}

In general, compositions of 1 are in bijection (one-to-one correspondence)
with subsets of {I,2,...,n—1}.

So to count the number of compositions, we can instead count the number
of subsets.

There are 2™ subsets of {1,2,...,n—1}.



A partition of a number n is a way to write n as a sum of non-increasing
natural numbers.

The partitionsof 4are 4,3+ 1,24+ 2,2+ 1+, I + 1+ 1+ 1.

Let p(n) be the number of partitions of n. So p(4) = 5.
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pm) I I 2 3 5 7 Il 15 22 30 42 .. 135 176

There is no simple formula for p(n). Instead we estimate how fast it grows.
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The graph below again shows I°g\pf , but now with a logarithmic x axis, so

the points plotted are for n = |, 10, 100, ..., 10'.

As this hints, logp(n) ~ 24/ % \/ﬁ where ~ means that the ratio of the two
sidestendsto | asn tends to co. The constant 2\/ is about 2.5651.

Theorem (Hardy—Ramanujan, 1918)

exp 2\/7\f .
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The graph below again shows I°g\pf , but now with a logarithmic x axis, so

the points plotted are for n = |, 10, 100, ..., 10'.

As this hints, logp(n) ~ 24/ % \/ﬁ where ~ means that the ratio of the two
sidestendsto | asn tends to co. The constant 2\/ is about 2.5651.

Theorem (Hardy—Ramanujan, 1918)

_exp 2/ % \f
4\f n '
In fact Hardy and Ramanujan proved something more precise: they gave a

divergent series for p(n). My paper Counting partitions on the abacus,
Ramanujan Journal, 2008 gives an elementary proof of the theorem above.

TL



The Hardy—Ramanujan proof takes as its starting point the generating function
for the function p(n):

P(x) =p(0) +p(Dx +p@x2 +pB)3 +pAx* + - +pm)x"+--- .

Even though p(n) has no simple closed formula, there is a beautifully simple
formula for P(x).

As a warm-up, let q(n) be the number of partitions of 1 into distinct parts.
So q(4) = 2, counting 4 and 3 + 1.
» We do not count count 2 + 2 because the part 2 appears twice.
» Wedonotcount2+ | + | or I + | + | + | because the part | appears
(at least) twice.
Let

Q(x) = q(0) + q(Dx + q(2)x* + g3 + q4)x* + - + ()X + - - -
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The Hardy—Ramanujan proof takes as its starting point the generating function
for the function p(n):

P(x) =p(0) +p(Dx +p@x2 +pB)3 +pAx* + - +pm)x"+--- .

Even though p(n) has no simple closed formula, there is a beautifully simple
formula for P(x).

As a warm-up, let q(n) be the number of partitions of 1 into distinct parts.
So q(4) = 2, counting 4 and 3 + 1.
» We do not count count 2 + 2 because the part 2 appears twice.
» Wedonotcount2+ | + | or I + | + | + | because the part | appears
(at least) twice.
Let

Q(x) = q(0) + q(Dx + q(2)x* + g3 + q4)x* + - + ()X + - - -
Proposition

Q) = (1+x)(1+x)(T+x)(1+x") .
Proof. When we multiply out the right-hand side, the coefficient of x™ is the
number of ways to write x as a sum of distinct natural numbers. 0J



The Hardy—Ramanujan proof takes as its starting point the generating function
for the function p(n):

P(x) =p(0) +p(Dx +p@x2 +pB)3 +pAx* + - +pm)x"+--- .

Even though p(n) has no simple closed formula, there is a beautifully simple
formula for P(x).

Proposition
1 1 1

Tl oxT X213

Proof. The right-hand side is
T+x+x2 43+ )+ +x X+ )+ 3+ x X7+ ...

When we multiply out the right-hand side by taking x'™ from the first
bracket, x2™ from the second bracket, x>™ from the third bracket, and so
on, we get a contribution of | to the coefficient of x '™ T2maF3ms+ Thjs
counts the partition with m; parts of size i for each i. Hence the coefficient
of x™ is p(n). O

P(x)



The Hardy—Ramanujan proof takes as its starting point the generating function
for the function p(n):

P(x) =p(0) +p(Dx +p@x2 +pB)3 +pAx* + - +pm)x"+--- .

Even though p(n) has no simple closed formula, there is a beautifully simple
formula for P(x).

Proposition
1 1 1

Tl oxT X213

Proof. The right-hand side is
T+x+x2 4+ )+ +x X+ )+ 3+ x X7+ ...

P(x)

When we multiply out the right-hand side by taking x'™ from the first
bracket, x2™ from the second bracket, x3™ from the third bracket, and so
on, we get a contribution of | to the coefficient of x '™ T2maF3ms+ Thjs
counts the partition with m; parts of size i for each i. Hence the coefficient
of x™ is p(n). O

Forexample3+3+2+ 1+ 1+ 1lhasm =3, my =1, m3 =2



Generating functions are very useful for counting combinatorial objects.
Proposition

The number of partitions of 1 into odd parts is equal to the number of partitions
of ninto distinct parts.

For example, when n = 9, there are 8 partitions of either type:

9 9

7+1+1 8+ I

5+3+1 7+2
S+HI+1T+1+1 6+3
3+3+43 6+2+1
3434141+ 5+4
3+ +T+1T4+14+141 54+3+1
I+T+1 14+ 4+3+2



Generating functions are very useful for counting combinatorial objects.
Proposition

The number of partitions of 1 into odd parts is equal to the number of partitions
of ninto distinct parts.

Proof. The generating function for the left-hand side is

f—"[ T 1] 1

i:]1—x21*1_1—x1—x31—x5”'
1 T—x 1 1T—x* 1 1-x°
STl —xT=x2 T =3 T —x*T—x>1T—x6""
_1—x21—x41—x6
I N
= (1+x)(1+x) (1 +x) ...

=TJ0+xY)
i=1

which is the generating function for the right-hand side. Since the generating
functions are equal so are the sequences they enumerate. [




There are also bijective proofs of the proposition (like the bijective proof for

the number of compositions) but all need more work than using generating
functions.

9 9
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I+ 4+14+1T+1+T+14+141 4+342
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A one-line algebraic proof for experts: the Brauer character table of the
symmetric group S, in characteristic 2 is square.



There are also bijective proofs of the proposition (like the bijective proof for
the number of compositions) but all need more work than using generating
functions.

9 9

7+1+1 8+ I

54+3+1 742
S5+1+14+141 AN 6+3
3+3+3 6+2+1
3+3+1+1+41 5+4
341 +1T+1T+14+141 54+3+1
I+ 4+14+1T+1+T+14+141 4+342

A one-line algebraic proof for experts: the Brauer character table of the
symmetric group S, in characteristic 2 is square.

What'’s the point of having proofs? What’s the point of having multiple
proofs?



Alan Turing (1912 — 1952) was a polymathematic pioneer of early
computing
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Turing’s maths teacher had a fair point: mathematics papers are mostly words.

A PROOF OF LIOUVILLE’S THEOREM
EDWARD NELSON

Consider a bounded harmonic function on Euclidean space. Since
it is harmonic, its value at any point is its average over any sphere,
and hence over any ball, with the point as center. Given two points,
choose two balls with the given points as centers and of equal radius.
If the radius is large enough, the two balls will coincide except for an
arbitrarily small proportion of their volume. Since the function is
bounded, the averages of it over the two balls are arbitrarily close,
and so the function assumes the same value at any two points. Thus
a bounded harmonic function on Euclidean space is a constant.

PRINCETON UNIVERSITY

Received by the editors June 26, 1961.



Turing and his Hut 8 team used a mixture of cryptanalysis, statistical
inference and computation — the ‘Bombe’ — to crack the Enigma code
used by the German Navy in the Second World War.
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Turing’s finest mathematical achievement is the following theorem.

Theorem. There is no algorithm that will decide the truth or falsity of a
mathematical statement

» There are infinitely many primes True
» The number of partitions into odd parts is equal to the number

of partitions into distinct parts True
» There are infinitely many primes ending | True
» There are infinitely many primes ending 2 False
> A real function f is equal to its Taylor series ) -~ WX“

at any x for which the series converges



Turing’s finest mathematical achievement is the following theorem.

Theorem. There is no algorithm that will decide the truth or falsity of a
mathematical statement

» There are infinitely many primes True
» The number of partitions into odd parts is equal to the number

of partitions into distinct parts True
» There are infinitely many primes ending | True
» There are infinitely many primes ending 2 False
> A real function f is equal to its Taylor series ) -~ WX“

at any x for which the series converges False
» 23 and 32 are the only consecutive integer powers m

» There are infinitely many twin primes such as 3, 5 or 5, 7
orll,130r 17,19 0r ... or2027,2029 or ... m

» p(n) is equally likely to be even as odd m



Really what Turing proved is that there is no algorithm that will decide
whether a Turing machine halts. “The Entscheidungsproblem is undecidable’

Godel proved his incompleteness theorem before Turing. Godel’s theorem
can now be understood as a corollary of Turing’s theorem on the
Entscheidungsproblem.

Corollary (Godel’s first incompleteness theorem)
Fix a formal proof system. There exists a true statement that has no formal proof.

For example, a formal proof from Russell-Whitehead Principia Mathematica.

¥6443. F:ia, Bel.dianB=A.=.avfBe2

Dem.
F.o#5426.DFna=1z.8=t"y.D:avBe2.=.a+y.
[%51:231] =fenty=A.
[%1312] =.anf=A (1)

F.(1).%11-1185.D
Fi(ga, y).a=t'z.B=1ty.D:auBe2,
F.(2).%11'54.%52'1. D F. Prop
From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1=2.

canfB=A (2)

il



Really what Turing proved is that there is no algorithm that will decide
whether a Turing machine halts. “The Entscheidungsproblem is undecidable’

Godel proved his incompleteness theorem before Turing. Godel’s theorem
can now be understood as a corollary of Turing’s theorem on the
Entscheidungsproblem.

Corollary (Godel’s first incompleteness theorem)
Fix a formal proof system. There exists a true statement that has no formal proof.

Proof. Suppose, for a contradiction, that either P or —P is provable for every
statement P. Given a Turing machine M, let Py, be the statement ‘M halts’.

» Spend week | looking for a formal proof of Py,

» Spend week 2 looking for a formal proof of —Pj,,

» Spend week 3 looking for a formal proof of Py,
and so on. Since either Py or =Py, is provable, and formal proofs can be
enumerated one-by-one, eventually we will succeed in finding a proof.
Therefore we can detect when Turing machines halt. This contradicts
Turing’s result. Hence there are statements Q such that neither Q nor —Q
is provable. But either Q or —Q is true. O



Thank you. Any questions?
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