Vertices of Specht Modules

Mark Wildon
Outline

1. Vertices and the Brauer Correspondence for Modules
2. Vertices of Specht Modules
3. Complexity of Modules and Two Results of K. J. Lim
Let \(G \) be a finite group. Let \(F \) be a field of prime characteristic \(p \). Let \(V \) be an indecomposable \(FG \)-module.

A subgroup \(P \leq G \) is said to be a vertex of \(V \) if there is an \(FG \)-module \(U \) such that \(V \mid U \uparrow^G_P \), and \(P \) is minimal with this property.
Let G be a finite group. Let F be a field of prime characteristic p. Let V be an indecomposable FG-module.

A subgroup $P \leq G$ is said to be a vertex of V is there is an FG-module U such that $V \uparrow_{P}^{G}$, and P is minimal with this property.

Green showed in 1959 that

(i) Vertices are p-subgroups of G;
(ii) If $P, Q \leq G$ are vertices of V then $P^{x} = Q$ for some $x \in G$.
Brauer Correspondence for Modules

Let $V^Q = \{ v \in V : vg = v \text{ for all } g \in Q \}$. Given $R \leq Q \leq G$ define the trace map $\operatorname{Tr}_R^Q : V^R \to V^Q$ by

$$\operatorname{Tr}_R^Q(v) = \sum_{i=1}^{m} vg_i$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is $V(Q) = V^Q \sum_{R < Q} \operatorname{Tr}_R^Q V^R$.

The Brauer correspondent is a module for $N_G(Q)$.

Theorem (Broué 1985) If $V(Q) \neq 0$ then Q is contained in a vertex of V.
Brauer Correspondence for Modules

Let $V^Q = \{v \in V : vg = v \text{ for all } g \in Q\}$. Given $R \leq Q \leq G$ define the trace map $\text{Tr}^Q_R : V^R \to V^Q$ by

$$\text{Tr}^Q_R(v) = \sum_{i=1}^{m} vg_i,$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = \frac{V^Q}{\sum_{R < Q} \text{Tr}^Q_R V_R}.$$
Let $V^Q = \{ v \in V : vg = v \text{ for all } g \in Q \}$. Given $R \leq Q \leq G$ define the trace map $\text{Tr}^Q_R : V^R \to V^Q$ by

$$\text{Tr}^Q_R(v) = \sum_{i=1}^m vg_i$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = \frac{V^Q}{\sum_{R < Q} \text{Tr}^Q_R V_R}.$$

The Brauer correspondent is a module for $N_G(Q)$.

Theorem (Broué 1985) If $V(Q) \neq 0$ then Q is contained in a vertex of V.

Let $V^Q = \{ v \in V : vg = v \text{ for all } g \in Q \}$. Given $R \leq Q \leq G$ define the trace map $\text{Tr}^Q_R : V^R \to V^Q$ by

$$\text{Tr}^Q_R(v) = \sum_{i=1}^{m} vg_i$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = \frac{V^Q}{\sum_{R<Q} \text{Tr}^Q_R V_R}.$$

The Brauer correspondent is a module for $N_G(Q)$.

Theorem (Broué 1985)

If $V(Q) \neq 0$ then Q is contained in a vertex of V.
Brauer Correspondence for p-Permutation Modules

Let P_{max} be a Sylow p-subgroup of G.

An FG-module V is p-permutation if it has a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that $v_i g \in \mathcal{B}$ for all $g \in P_{\text{max}}$.

Remark: V is an indecomposable p-permutation module if and only if $V \mid F \uparrow_P^G$ for some $P \leq G$.

Lemma
Suppose that V is p-permutation with respect to the basis \mathcal{B}. If $Q \leq P_{\text{max}}$ then $V(Q) = \langle \mathcal{B}^Q \rangle_F$.

Theorem (Broué 1985)
Let V be an indecomposable p-permutation FG-module. Then $V(Q) \neq 0 \iff Q$ is contained in a vertex of V. If V has vertex P then $V(P)$ is the Green correspondent of V.

Theorem

Let $n \in \mathbb{N}$ and let p be a prime such that $p \nmid n$. The vertex of $S^{(n-r,1^r)}$, defined over a field of characteristic p, is a Sylow p-subgroup of $S_{n-r-1} \times S_r$.

The proof uses a p-permutation basis for $S^{(n-r-1,1^r)}$.

Application: In characteristic 2 Specht modules may be decomposable. I used this theorem to give a short proof of a theorem of Murphy (1980): if n is odd and $2^{\ell-1} \leq r < 2^\ell$ then $S^{(n-r,1^r)}$ is decomposable, unless $n \equiv 2^r + 1 \mod 2^\ell$.

Remark: Suppose that S^{λ}, defined over a field of characteristic p, is indecomposable with vertex Q. It follows from a theorem of Green (1960) that if g is a p-element such that $\chi^{\lambda}(g) \neq 0$ then there exists $x \in G$ such that $g \in Qx$.
Theorem

Let $n \in \mathbb{N}$ and let p be a prime such that $p \nmid n$. The vertex of $S^{(n-r,1^r)}$, defined over a field of characteristic p, is a Sylow p-subgroup of $S_{n-r-1} \times S_r$.

The proof uses a p-permutation basis for $S^{(n-r-1,1^r)}$.

Application: In characteristic 2 Specht modules may be decomposable. I used this theorem to give a short proof of a theorem of Murphy (1980): if n is odd and $2^{\ell-1} \leq r < 2^\ell$ then $S^{(n-r,1^r)}$ is decomposable, unless $n \equiv 2r + 1 \mod 2^\ell$.
Theorem
Let \(n \in \mathbb{N} \) and let \(p \) be a prime such that \(p \nmid n \). The vertex of \(S^{(n-r,1^r)} \), defined over a field of characteristic \(p \), is a Sylow \(p \)-subgroup of \(S_{n-r-1} \times S_r \).

The proof uses a \(p \)-permutation basis for \(S^{(n-r-1,1^r)} \).

Application: In characteristic 2 Specht modules may be decomposable. I used this theorem to give a short proof of a theorem of Murphy (1980): if \(n \) is odd and \(2^\ell-1 \leq r < 2^\ell \) then \(S^{(n-r,1^r)} \) is decomposable, unless \(n \equiv 2r + 1 \mod 2^\ell \).

Remark: Suppose that \(S^\lambda \), defined over a field of characteristic \(p \), is indecomposable with vertex \(Q \). It follows from a theorem of Green (1960) that if \(g \) is a \(p \)-element such that \(\chi^\lambda(g) \neq 0 \) then there exists \(x \in G \) such that \(g \in Q^x \).
Open Problems

Problem

Find vertices of hook Specht modules $S^{(n-r,1^r)}$ over fields of characteristic $p \geq 3$ where $p \mid n$.

Solved when $p = 2$ by Murphy and Peel (1984).

Work is in progress with Susanne Danz and Karin Erdmann on $S^{(n-3,1,1,1)}$ in characteristic 3.

Problem

Clarify the relationship between character values on p-elements and vertices in characteristic p.
Let λ be a partition and let t be a λ-tableau. Let $H(t)$ be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 \\
\end{array}
$$

then $H(t)$ is generated by

$$(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).$$
A Subgroup Bound on Vertices

Let λ be a partition and let t be a λ-tableau. Let $H(t)$ be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13
\end{array}
$$

then $H(t)$ is generated by

$$(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).$$
A Subgroup Bound on Vertices

Let λ be a partition and let t be a λ-tableau. Let $H(t)$ be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13
\end{array}
\]

then $H(t)$ is generated by

$$(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).$$
A Subgroup Bound on Vertices

Let λ be a partition and let t be a λ-tableau. Let $H(t)$ be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

$$t = \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 & & & & \\
13 & & & & & & & \\
\end{array}$$

then $H(t)$ is generated by

$$(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).$$

Theorem

*If S^λ is indecomposable then it has a vertex containing a Sylow p-subgroup of $H(t)$.***
We assume w.l.o.g. t is the greatest tableau under \triangleright. Let Q be a Sylow p-subgroup of $H(t)$.

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

$$
\begin{array}{cccccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 10 & 11 & 12 & 13 \\
\end{array}
$$

to be fixed by $(2, 3, 4)(10, 11, 12)$ and $(5, 6, 7)$.
Outline Proof

We assume w.l.o.g. t is the greatest tableau under \triangleright. Let Q be a Sylow p-subgroup of $H(t)$.

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

$$
e_{12345678}
9101112
13$$

to be fixed by $(2,3,4)(10,11,12)$ and $(5,6,7)$.

(2) Then show that $e_t \notin \sum_{R \subset Q} \text{Tr}_R^Q(S^\lambda)^R$. Hence $S^\lambda(Q) \neq 0$, so by Broué’s theorem, S^λ has a vertex containing Q.

We assume w.l.o.g. t is the greatest tableau under \triangleright. Let Q be a Sylow p-subgroup of $H(t)$.

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 \\
\end{array}
$$

to be fixed by $(2, 3, 4)(10, 11, 12)$ and $(5, 6, 7)$.

(2) Then show that $e_t \not\in \sum_{R \triangleleft Q} \text{Tr}^Q_R(S^\lambda)^R$. Hence $S^\lambda(Q) \neq 0$, so by Broué’s theorem, S^λ has a vertex containing Q.

For (2) it suffices to show that if u is a λ-tableau and $g \in H(t)$ is a p-element then, when $e_u + e_ug + \cdots + e_u g^{p-1}$ is written as a linear combination of standard polytabloids, the coefficient of e_t is 0.
§3 Complexity of Modules and Two Results of K. J. Lim

Definition
Let G be a finite group and let V and an FG-module. Let

\[\rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow V \]

be a minimal projective resolution of V. The complexity of V is the least non-negative integer c such that

\[
\lim_{n \to \infty} \frac{\dim_F P_n}{n^c} = 0.
\]

Theorem (Lim 2011, Theorem 3.2)
Suppose that the Specht module S^μ, defined over a field of odd characteristic, has an abelian vertex. Let m be the p-rank of Q. If c is the complexity of S^μ and w is the weight of μ then $c = w = m$ and Q is conjugate to the elementary abelian subgroup

\[
\langle (1, \ldots, p) \rangle \times \cdots \times (wp - p + 1, \ldots, wp) \rangle \leq S_{wp}.
\]
Abelian Vertices

In 2003 I proved:

Theorem

The Specht module S^λ, defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.
Abelian Vertices

In 2003 I proved:

Theorem
The Specht module S^λ, defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)
Let p be an odd prime and let $1 \leq m \leq p - 1$. The Specht module S^λ, defined over a field of characteristic p has an abelian vertex of p-rank m if and only if the p-weight of μ is m.
Abelian Vertices

In 2003 I proved:

Theorem
The Specht module S^λ, defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)
Let p be an odd prime and let $1 \leq m \leq p - 1$. The Specht module S^λ, defined over a field of characteristic p has an abelian vertex of p-rank m if and only if the p-weight of μ is m.

Problem
Classify all Specht modules with abelian vertex.