Vertices of Specht Modules

Mark Wildon

Outline

- (1) Vertices and the Brauer Correspondence for Modules
- (2) Vertices of Specht Modules
- (3) Complexity of Modules and Two Results of K. J. Lim

 $\S1:$ Vertices and the Brauer Correspondence for Modules

Let G be a finite group. Let F be a field of prime characteristic p. Let V be an indecomposable FG-module.

A subgroup $P \leq G$ is said to be a vertex of V is there is an *FG*-module U such that $V \mid U \uparrow_P^G$, and P is minimal with this property.

 $\S1:$ Vertices and the Brauer Correspondence for Modules

Let G be a finite group. Let F be a field of prime characteristic p. Let V be an indecomposable FG-module.

A subgroup $P \leq G$ is said to be a vertex of V is there is an *FG*-module U such that $V \mid U \uparrow_P^G$, and P is minimal with this property.

Green showed in 1959 that

(i) Vertices are *p*-subgroups of *G*;
(ii) If *P*, *Q* ≤ *G* are vertices of *V* then *P^x* = *Q* for some *x* ∈ *G*.

Let $V^Q = \{v \in V : vg = v \text{ for all } g \in Q\}$. Given $R \leq Q \leq G$ define the trace map $\operatorname{Tr}_R^Q : V^R \to V^Q$ by

$$\operatorname{Tr}_R^Q(v) = \sum_{i=1}^m v g_i$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

Let $V^Q = \{v \in V : vg = v \text{ for all } g \in Q\}$. Given $R \leq Q \leq G$ define the trace map $\operatorname{Tr}_R^Q : V^R \to V^Q$ by

$$\operatorname{Tr}_{R}^{Q}(v) = \sum_{i=1}^{m} v g_{i}$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = \frac{V^Q}{\sum_{R < Q} \operatorname{Tr}_R^Q V_R}$$

Let $V^Q = \{v \in V : vg = v \text{ for all } g \in Q\}$. Given $R \leq Q \leq G$ define the trace map $\operatorname{Tr}_R^Q : V^R \to V^Q$ by

$$\operatorname{Tr}_{R}^{Q}(v) = \sum_{i=1}^{m} v g_{i}$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = rac{V^Q}{\sum_{R < Q} \operatorname{Tr}_R^Q V_R}.$$

The Brauer correspondent is a module for $N_G(Q)$.

Let $V^Q = \{ v \in V : vg = v \text{ for all } g \in Q \}$. Given $R \leq Q \leq G$ define the trace map $\operatorname{Tr}_R^Q : V^R \to V^Q$ by

$$\operatorname{Tr}_{R}^{Q}(v) = \sum_{i=1}^{m} v g_{i}$$

where $Q = Rg_1 \cup \ldots \cup Rg_m$.

The Brauer correspondent of V with respect to Q is

$$V(Q) = rac{V^Q}{\sum_{R < Q} \operatorname{Tr}_R^Q V_R}.$$

The Brauer correspondent is a module for $N_G(Q)$.

Theorem (Broué 1985)

If $V(Q) \neq 0$ then Q is contained in a vertex of V.

Brauer Correspondence for *p*-Permutation Modules

Let P_{\max} be a Sylow *p*-subgroup of *G*.

An *FG*-module *V* is *p*-permutation if it has a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that $v_i g \in \mathcal{B}$ for all $g \in P_{max}$.

Remark: V is an indecomposable p-permutation module if and only if $V \mid F \uparrow_P^G$ for some $P \leq G$.

Lemma

Suppose that V is p-permutation with respect to the basis \mathcal{B} . If $Q \leq P_{\max}$ then $V(Q) = \langle \mathcal{B}^Q \rangle_F$.

Theorem (Broué 1985)

Let V be an indecomposable p-permutation FG-module. Then $V(Q) \neq 0 \iff Q$ is contained in a vertex of V. If V has vertex P then V(P) is the Green correspondent of V.

$\S2$ Vertices of Specht Modules

Theorem

Let $n \in \mathbf{N}$ and let p be a prime such that $p \not\mid n$. The vertex of $S^{(n-r,1^r)}$, defined over a field of characteristic p, is a Sylow p-subgroup of $S_{n-r-1} \times S_r$.

The proof uses a *p*-permutation basis for $S^{(n-r-1,1^r)}$.

$\S2$ Vertices of Specht Modules

Theorem

Let $n \in \mathbf{N}$ and let p be a prime such that $p \nmid n$. The vertex of $S^{(n-r,1^r)}$, defined over a field of characteristic p, is a Sylow p-subgroup of $S_{n-r-1} \times S_r$.

The proof uses a *p*-permutation basis for $S^{(n-r-1,1^r)}$.

Application: In characteristic 2 Specht modules may be decomposable. I used this theorem to give a short proof of a theorem of Murphy (1980): if *n* is odd and $2^{\ell-1} \le r < 2^{\ell}$ then $S^{(n-r,1^r)}$ is decomposable, unless $n \equiv 2r + 1 \mod 2^{\ell}$.

$\S2$ Vertices of Specht Modules

Theorem

Let $n \in \mathbf{N}$ and let p be a prime such that $p \nmid n$. The vertex of $S^{(n-r,1^r)}$, defined over a field of characteristic p, is a Sylow p-subgroup of $S_{n-r-1} \times S_r$.

The proof uses a *p*-permutation basis for $S^{(n-r-1,1^r)}$.

Application: In characteristic 2 Specht modules may be decomposable. I used this theorem to give a short proof of a theorem of Murphy (1980): if *n* is odd and $2^{\ell-1} \le r < 2^{\ell}$ then $S^{(n-r,1^r)}$ is decomposable, unless $n \equiv 2r + 1 \mod 2^{\ell}$.

Remark: Suppose that S^{λ} , defined over a field of characteristic p, is indecomposable with vertex Q. It follows from a theorem of Green (1960) that if g is a p-element such that $\chi^{\lambda}(g) \neq 0$ then there exists $x \in G$ such that $g \in Q^{x}$.

Open Problems

Problem

Find vertices of hook Specht modules $S^{(n-r,1^r)}$ over fields of characteristic $p \ge 3$ where $p \mid n$.

Solved when p = 2 by Murphy and Peel (1984).

Work is in progress with Susanne Danz and Karin Erdmann on $S^{(n-3,1,1,1)}$ in characteristic 3.

Problem

Clarify the relationship between character values on p-elements and vertices in characteristic p.

Let λ be a partition and let t be a λ -tableau. Let H(t) be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

then H(t) is generated by

(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).

Let λ be a partition and let t be a λ -tableau. Let H(t) be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

$$t = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 \end{bmatrix}$$

then H(t) is generated by

(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).

Let λ be a partition and let t be a λ -tableau. Let H(t) be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

$$t = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 \end{bmatrix}$$

then H(t) is generated by

(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).

Let λ be a partition and let t be a λ -tableau. Let H(t) be the subgroup of the row stabilising group of t that permutes, as blocks for its action, the entries of columns of t of equal length.

For example if $\lambda = (8, 4, 1)$ and

then H(t) is generated by

(2,3,4)(10,11,12),(2,3)(10,11),(5,6,7,8),(5,6).

Theorem

If S^{λ} is indecomposable then it has a vertex containing a Sylow p-subgroup of H(t).

Outline Proof

We assume w.l.o.g. t is the greatest tableau under \geq . Let Q be a Sylow p-subgroup of H(t).

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

to be fixed by (2,3,4)(10,11,12) and (5,6,7).

Outline Proof

We assume w.l.o.g. t is the greatest tableau under \geq . Let Q be a Sylow p-subgroup of H(t).

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

to be fixed by (2,3,4)(10,11,12) and (5,6,7).

(2) Then show that $e_t \notin \sum_{R < Q} \operatorname{Tr}_R^Q (S^{\lambda})^R$. Hence $S^{\lambda}(Q) \neq 0$, so by Broué's theorem, S^{λ} has a vertex containing Q.

Outline Proof

We assume w.l.o.g. t is the greatest tableau under \geq . Let Q be a Sylow p-subgroup of H(t).

(1) Show that e_t is fixed by every permutation in Q. So for instance, we need

to be fixed by (2,3,4)(10,11,12) and (5,6,7).

(2) Then show that $e_t \notin \sum_{R < Q} \operatorname{Tr}_R^Q(S^{\lambda})^R$. Hence $S^{\lambda}(Q) \neq 0$, so by Broué's theorem, S^{λ} has a vertex containing Q.

For (2) it suffices to show that if u is a λ -tableau and $g \in H(t)$ is a p-element then, when $e_u + e_ug + \cdots + e_ug^{p-1}$ is written as a linear combination of standard polytabloids, the coefficient of e_t is 0.

 $\S3$ Complexity of Modules and Two Results of K. J. Lim

Definition

Let G be a finite group and let V and an FG-module. Let

$$ightarrow P_2
ightarrow P_1
ightarrow P_0
ightarrow V$$

be a minimal projective resolution of V. The complexity of V is the least non-negative integer c such that

$$\lim_{n\to\infty}\frac{\dim_F P_n}{n^c}=0.$$

Theorem (Lim 2011, Theorem 3.2)

Suppose that the Specht module S^{μ} , defined over a field of odd characteristic, has an abelian vertex. Let m be the p-rank of Q. If c is the complexity of S^{μ} and w is the weight of μ then c = w = m and Q is conjugate to the elementary abelian subgroup

$$\langle (1,\ldots,p) \rangle \times \cdots \times (wp - p + 1,\ldots,wp) \rangle \leq S_{wp}.$$

Abelian Vertices

In 2003 I proved:

Theorem

The Specht module S^{λ} , defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.

Abelian Vertices

In 2003 I proved:

Theorem

The Specht module S^{λ} , defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)

Let p be an odd prime and let $1 \le m \le p - 1$. The Specht module S^{λ} , defined over a field of characteristic p has an abelian vertex of p-rank m if and only if the p-weight of μ is m.

Abelian Vertices

In 2003 I proved:

Theorem

The Specht module S^{λ} , defined over a field of characteristic p, has a non-trivial cyclic vertex if and only if λ has p-weight 1.

For odd characteristic, Lim has proved.

Theorem (Lim 2011, Corollary 5.1)

Let p be an odd prime and let $1 \le m \le p - 1$. The Specht module S^{λ} , defined over a field of characteristic p has an abelian vertex of p-rank m if and only if the p-weight of μ is m.

Problem

Classify all Specht modules with abelian vertex.