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Abstract. We show that Brin’s generalisations 2V and 3V of the
Thompson-Higman group V are of type FP∞. Our methods also give a
new proof that both groups are finitely presented.

1. Introduction

In this paper we study cohomological finiteness conditions of certain gen-
eralisations of Thompson’s group V , which is a simple, finitely presented
group of homeomorphisms of the Cantor-set C. The finiteness conditions
we consider, are the homotopical finiteness property F∞ for a group, which
was first defined by C.T.C.Wall, and its homological version FP∞, which
was studied in detail in [3]. We say that a group G is of type F∞ if it admits
a K(G, 1) with finite k-skeleton in all dimensions k. A group is of type FP∞
if the trivial ZG-module Z has a resolution with finitely generated projective
ZG-modules. A group is of type F∞ if and only if it is of type FP∞ and
is finitely presented. There are, however, examples of groups of type FP∞,
which are not finitely presented [2].
In [8] K.S. Brown showed that Thompson’s groups F , T and V as well as
some generalisations such as Higman’s groups Vn,r (see [11]) are of type F∞.
The idea there is to express these groups as groups of algebra-automorphisms
and let them act on a poset determined by the algebra. It is then shown
that the geometric realisation of this poset yields the required finiteness
properties.
In [6] M. Brin defined a group sV generalising V for every natural number
s ≥ 2. Analogously to V , these groups are defined as subgroups of the
homeomorphism group of a finite Cartesian product of the Cantor-set. For
each s, the group sV is simple, finitely presented and contains a copy of
every finite group [7, 5]. It was also shown in [4] that for s 6= t, sV is not
isomorphic to tV.
Our main result is the following:

Main Theorem. Brin’s groups 2V and 3V are of type F∞ .

The proof of the Main Theorem is split in two parts : Theorems 4.17 and
5.6. We partially follow the proof of [8] that V has type F∞. Our proof is
more intricate, as the fact that some particular complex KY is t-connected
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if Y is sufficiently large requires more work than in Brown’s proof. As in [8]
we view sV as a group of algebra automorphisms and consider a poset A on
which sV acts. This action has the following properties:

(i) Vertex stabilisers are finite.
(ii) The complex |A| is contractible.
(iii) There is a filtration {|An|}n≥1 of sV -subcomplexes of |A| such that

each complex |An| is finite modulo sV .
(iv) For s = 2 and s = 3 the connectivity of the pair of complexes

(|An+1|, |An|) tends to infinity as n→∞.

We then apply Brown’s criterion [8, Cor. 3.3] to conclude that 2V and 3V
are finitely presented and of type F∞. The key result towards the proof of
our main theorem for s = 2 is Theorem 4.6. Finally, in the last section, we
prove Theorem 5.3 as a variation of Theorem 4.6 and show that the method
above can be applied for s = 3.

2. Construction of the algebra and the group

In this section we shall define the generalised Higman Algebra, also called
Cantor-Algebra, in a general setting. We then define sV as a group of
automorphisms of this Algebra.

Consider a finite set {1, . . . , s}. We call its elements colours. Also consider
a finite set of integers {n1, . . . , ns}, ni > 1. We call each ni the arity of the
colour i. We begin by defining an Ω-algebra U . For details the reader is
referred to [10]. We say U is an Ω-algebra, if, for each colour i, the following
operations are defined in U :

i) One ni-ary operation λi:

λi : Uni → U.

We call these operations ascending operations, or contractions.
ii) ni 1-ary operations α1

i , . . . , α
ni
i :

αji : U → U.

We call these operations 1-ary descending operations.

Throughout this paper all operations act on the right. By definition, Ω =

{λi, αji}i,j . In what follows it will be convenient to consider the following
map, which we also call operation: For each colour i, and any v ∈ U , we
denote

vαi := (vα1
i , vα

2
i , . . . , vα

ni
i ).

Therefore αi is a map

αi : U → Uni .

We call these maps descending operations, or expansions. Unless otherwise
stated, whenever we use the term “descending operation”, we refer to one
of the αi.

For any subset Y of U , a simple expansion of colour i of Y consists
of substituting some element y ∈ Y by the ni elements of the tuple yαi.
And a simple contraction of colour i of Y is the set obtained by substitut-
ing a certain collection of ni distinct elements of Y , say {a1, . . . , ani}, by
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(a1, . . . , ani)λi. We also use the word operation to refer to the effect of a
simple expansion, respectively contraction on a set .

A morphism between Ω-algebras is a map commuting with all operations
in Ω. Let B0 be a category of Ω-algebras. An object U0(X) ∈ B0 is a free
object in B0 with X as a free basis if for any S ∈ B0 any mapping

θ : X → S

can be extended in a unique way to a morphism

U0(X)→ S.

We also say U0(X) is free on X in the category B0. Following [10, III.2],
we construct the free object on any set X in the category of all Ω-algebras
as follows: take the set of finite sequences of elements of the disjoint union
Ω ∪X with the Ω-algebra structure defined by juxtaposition. Then U0(X)
is the sub Ω-algebra generated by X.

Definition 2.1. The free object constructed above is called the Ω-word
algebra and denoted WΩ(X). An admissible subset is any Y ⊂ WΩ(X),
which can be obtained from X by a finite number of operations αi and λj ,
i.e. by a finite number of simple contractions or expansions.

Now we consider the variety of Ω-algebras satisfying a certain set of identi-
ties.

Definition 2.2. Let Σ1 be the following set of laws in a countable (possibly
finite) alphabet X.

i) For any u ∈WΩ(X) and any colour i,

uαiλi = u.

ii) For any colour i and any ni-tuple (u1, . . . , uni) ∈WΩ(X)ni ,

(u1, . . . , uni)λiαi = (u1, . . . , uni).

The variety V1 of Ω-algebras which satisfy the identities in Σ1, obviously
contains nontrivial algebras. Hence it is a nontrivial variety. Therefore by
[10, IV 3.3] it contains free algebras on any set X. Let U1(X) be the free
Ω-algebra on X in V1. Moreover, by the proof of [10, IV 3.1]

U1(X) = WΩ(X)/q1,

where q1 is the fully invariant congruence generated by Σ1, i.e. the smallest
equivalence set in WΩ(X)×WΩ(X) containing Σ1, which admits any endo-
morphism of WΩ(X) and is Ω-closed (see [10, IV Section 1]). In fact there
is an epimorphism

θ1 : WΩ(X)→ U1(X)

and q1 corresponds precisely to Ker(θ1).

Definition 2.3. Let U ∈ V1 and let Y be a subset of U . A set Z obtained
from Y by a finite number of simple expansions is called a descendant of Y .
In this case we denote

Y ≤ Z.
Conversely, Y is called an ascendant of Z and can be obtained after a finite
number of simple contractions.
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In what follows we will consider Ω-algebras satisfying some additional iden-
tities as described below.

Definition 2.4. Let Σ be the set of identities

Σ = Σ1 ∪ {rij | 1 ≤ i < j ≤ s},
where rij consists of certain identifications between sets of simple expansions
of wαi and wαj for any w ∈WΩ(X) which do not depend on w.
Let X be a set and U(X) = U1(X)/q where q is the fully invariant congru-
ence generated by Σ. There is an epimorphism

θ2 : U1(X) � U(X)

a1 7→ ā1.

Let θ : WΩ(X) → U(X) be the composition of θ1 with θ2. We say that a
subset Y of U1(X) or of U(X) is admissible if it is the image by θ1 or θ
of an admissible subset of WΩ(X). We call the set of identities Σ valid if
the following condition holds: for any admissible set Y ⊆ U1(X) we have
|Y | = |Ȳ |, i.e. θ2 is injective on admissible subsets.
Let V be the variety of all Ω-algebras which satisfy the identities in a valid
Σ. Note that V contains nontrivial Ω-algebras, so it has free objects on
every set X. In fact, the algebra U(X) above is a free object on X.

Lemma 2.5. Any admissible subset is a free basis in W = U(X).

Proof. This can be proven using the same argument as in [11]: Let X be a
free basis of W , let i ∈ {1, . . . , s} be any colour of arity ni and

Y = (X r {x}) ∪ {xαji | 1 ≤ j ≤ ni}.
We will show that Y is a free basis of W . Recall that V is the variety
of Ω-algebras satisfying the identities Σ. Then, given any S ∈ V and any
mapping θ : Y → S, there is a unique way to obtain a map θ∗ : X → S such
that θ∗(x̃) = θ(x̃) for x̃ ∈ X r {x} and θ∗(x) = (θ(xα1

i ), . . . , θ(xα
ni
i ))λi.

As there is a unique θ̂ : W → S extending θ∗, the same happens with the
original θ.

Analogously, one proves that considering ni distinct elements x1, . . . , xni
of X, the admissible subset

Y = (X r {x1, . . . , xni}) ∪ {(x1, . . . , xni)λi}
is a free basis of W . �

Definition 2.6. Consider the set of s colours {1, . . . , s}, all of which have
arity 2, together with the relations:

Σ := Σ1 ∪ {αliαtj = αtjα
l
i | 1 ≤ i 6= j ≤ s; l, t = 1, 2}.

We call the Ω-algebra W = U({x0}), defined by the Σ above, the generalised
Higman algebra on s colours.

Remark 2.7. (Geometric interpretation of the generalised Higman alge-
bra). Consider the unit cube C of Rs. Fix a bijection between the set of
colours {1, . . . , s} and the set of hyperplanes which are parallel to the faces
of C. To each operation αi we associate a halving using a hyperplane par-
allel to the hyperplane corresponding to i. In this case we say we halve in
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direction i. Then, to each side of this halving we associate one of the com-
ponents of αi: α

1
i and α2

i . This association will stay fixed. For a sequence
of 1-ary descending operations u = αr1i1 . . . α

rt
it

with rj ∈ {1, 2} we perform
the following operations in C: First, halve it in direction i1 and take the
r1-half. Repeat the process with operation αr2i2 for this half. At the end, we
get a subset (subparallelepiped) of C. For simplicity we call the subparal-
lelepipeds s-subcubes or simply s-cubes. Note that at any stage, if i 6= j,
the effect of αrii α

rj
j equals the effect of α

rj
j α

ri
i .

Figure 1

The family of s-subcubes of the s-cube C, which can be obtained in this
way corresponds to the set x(D) of descendants of x in the generalised Hig-
man algebra U({x0}), where x is an element belonging to some admissible
subset. Analogously, we may identify any admissible subset A with a collec-
tion of |A| s-cubes. In particular, the set of descendants of A corresponds to
the set of those subsets in the collection of |A| s-cubes, which are obtained
in the prescribed way.

Remark 2.8. In the following diagram we use two different types of carets
to visualise the two colours in the generalised Higman algebra on 2 colours,
each of arity 2.

α1
1 α2

1 α1
2 α2

2

Figure 2

The first type of caret corresponds to vertical cutting and the second
one to horizontal. We view an admissible set that is a descendent of an
element x as the set of leaves of a rooted tree with root x. The rooted
tree is constructed by gluing one of the two types of carets when passing to
descendants. The following two rooted trees represent the same admissible
set:
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x

1 2 3 4

x

1 3 2 4

Figure 3

Considering the geometric interpretation of the generalised Higman algebra,
both of the rooted trees above represent the following subdivision of the
square:

1 3

2 4

Figure 4

Lemma 2.9. The generalised Higman algebra W = U({x0}) is valid.

Proof. To begin we claim that for any pair of admissible subsets Y and
Z ⊆ U1({x0}), such that Z is obtained from Y after a simple expansion,
we have |Z̄| = |Ȳ | + 1. Recall that Z̄ and Ȳ are the images of Z and Y in
U({x0}). Any admissible set in U1({x0}) is a descendant of an admissible
set with only one element, say y. So for x = ȳ we have that Z̄, Ȳ ∈ x(D),
where x(D) is as defined in Remark 2.7. Using the geometric interpretation
of x(D) as a subdivision of an s-cube we get the claim.

Conversely, if Z is a simple contraction of Y then Y is a simple expansion
of Z. Thus |Ȳ | = |Z̄|+ 1.
Finally, an induction on the number of simple contractions and expansions
needed to obtain an admissible subset Ȳ ⊆ U({x0}) from {x0} yields the
result. �

Definition 2.10. The Brin-Thompson-Higman group onW0 = U(X), which
we denote G(W0), is the group of algebra automorphisms of W0 which are
induced by a bijection Z → Y for any two admissible sets Z and Y of the
same cardinality. If W is the generalised Higman algebra U({x0}), then
G(W ) is the Brin group on s colours and is denoted sV .

The following diagram illustrates an element g of 2V sending each leaf to
the leaf with the same label.
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1 2

3
−→
g

1

3 2

Figure 5

Remark 2.11. Looking at the geometric interpretation of the generalised
Higman algebra, Section 2.3 of [6] implies that this is exactly the definition
of Brin’s generalisation 2V of V as a group of self-homeomorphisms of C×C,
where C denotes the Cantor-set. The element g in Figure 5 corresponds to
the following picture:

2

1

3 −→
g

1

2

3

Figure 6

The equivalence of definitions for higher dimensional sV follows from Section
4.1 [6]. If there is only one colour, then V is exactly the Higman- Thompson
group as defined in [8].

3. The poset of admissible subsets

In this section we consider the Brin-Higman algebra on s colours with basis
{x}. We write U for U({x}).

Definition 3.1. The set of admissible subsets is a poset with the order
defined by A < B if B is a descendant of A. We denote this poset by A
and by |A| its geometric realization. Note that any descendant and any
ascendant of an admissible subset is also admissible.

Given admissible subsets Y and Z of U , we say that they have a unique
least upper bound T if Y ≤ T and Z ≤ T , and whenever Y ≤ S and Z ≤ S,
then T ≤ S. Analogously, we define the notion of greatest lower bound.

Lemma 3.2. Let A, Y and Z be admissible subsets with A ≤ Y and A ≤ Z.
Then there is a unique least upper bound of Y and Z.

Proof. Consider the geometric representation of the set of descendants of A
as subdivisions of s-dimensional cubes (in fact s-dimensional parallelepipeds
but we call them cubes for simplicity) labeled by the elements of A, see
Remark 2.7. Then the result of performing both sets of subdivisions corre-
sponding to Y and Z yields an upper bound T . Clearly, for any other upper
bound S of Y and Z we have T ≤ S. �
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Lemma 3.3. Let Y , Y1 and Z be admissible subsets with

Y ≥ Y1 ≤ Z.
Then there is some admissible subset Z1 with

Y ≤ Z1 ≥ Z.

Proof. Observe that Y and Z are both descendants of Y1. Then by Lemma
3.2 there exists an upper bound Z1 of Y and Z. So we have Y ≤ Z1 ≥ Z. �

Proposition 3.4. Any two admissible subsets have some upper bound.

Proof. Let Y and Z be two admissible subsets. By definition we can obtain
Z from Y by a finite number of expansions or contractions. Therefore we
may put

Y ≥ Y1 ≤ Y2 ≥ Y3 ≤ . . . ≥ Yr ≤ Z.
By Lemma 3.3 we get

Y ≤ Z1 ≥ Y2 ≥ Y3 ≤ . . .
and we may shorten the previous chain by omitting Y2 to get a chain

Y ≤ Z1 ≥ Y3 ≤ . . .
Thus after finitely many steps we get

Y ≤ T ≥ Z or Y ≥ T ≤ Z
for some T . In the second case we apply Lemma 3.3. �

Proposition 3.4 has the following consequence: for any admissible subset
A, any element g ∈ G(sV ) can be represented by its action in the set of
descendants of A, i.e. there is some A ≤ Z with A ≤ Zg. To see this, choose
Z to be some upper bound of A and Ag−1. Then A ≤ Z and Ag−1 ≤ Z, so
A ≤ Zg.

Lemma 3.5. |A| is contractible.

Proof. It is a consequence of Proposition 3.4 as the poset A is directed. �

Remark 3.6. Observe that as in the case of V considered in [8], the sta-
biliser of any admissible set Y in sV is finite, as it consists precisely of the
permutations of the elements of Y .

We consider the filtration of |A| given by

An := {Y ∈ A | |Y | ≤ n}.

Lemma 3.7. Each |An|/sV is finite.

Proof. For any Y and Z ∈ An with |Y | = |Z| we may consider the element
g ∈ sV given by yg = yσ, where σ : Y → Z is a fixed bijection. Thus sV
acts transitively on the admissible sets of the same size. �

Contrary to what happens with upper bounds, it is not true in general
that any two admissible subsets have some lower bound. But the existence
of greatest lower bounds in some particular cases will be crucial in the subse-
quent sections. To overcome this problem, we assume that our contractions
are descendants of the same A and consider greatest lower bounds above A.
For simplicity we use the following notation.
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Definition 3.8. Let Λ be a finite set of admissible sets, A1 and A2 be
admissible sets. We write

A1 ≤ Λ if for every B ∈ Λ we have A1 ≤ B
and

Λ ≤ A2 if for every B ∈ Λ we have B ≤ A2.

Definition 3.9. Let A be an admissible set and Ω = {Y0, . . . , Yt} be a finite
set of admissible sets with A ≤ Ω. Assume there exists an admissible set M
such that A ≤M ≤ Ω and for any other admissible set B with A ≤ B ≤ Ω,
we have B ≤M . Then we call M a greatest lower bound of Ω above A and
denote M = glbA(Ω).

Definition 3.10. Let A ≤ Y be admissible sets and let r ≥ 0 be an integer.
We say that A involves contractions of r elements of Y , or involves r elements
of Y for short, if |Y rA| = r; we also say that Y rA are the elements of Y
contracted in A. Two contractions A1, A2 ≤ Y are said to be disjoint if the
respective sets of elements of Y contracted in A1 and A2 are disjoint.

In the particular case of disjoint contractions of a certain admissible Y the
existence of greatest lower bounds follows easily:

Lemma 3.11. Let Ω = {M0, . . . ,Mt} be a set of pairwise disjoint contrac-
tions of Y . Then

∅ 6=
⋂
i

{L | L ≤Mi}

has a maximal element M which we call a global greatest lower bound for
Ω and denote by gglb(Ω). In particular for any A ≤ Ω, M is a glbA(Ω).
Moreover

|elements of Y involved in M | =
∑

0≤i≤t
|elements of Y involved in Mi|

Proof. We obtain M by successively performing the contractions Mi. �

Lemma 3.12. Let A be an admissible set and Ω = {Y0, . . . , Yt} be a finite
set of admissible sets such that A ≤ Ω. Then for an admissible subset M
we have M = glbA(Ω) if and only if A ≤ M ≤ Ω and there is no expansion
N with M < N and N ≤ Ω.

Proof. Assume first M = glbA(Ω). If M < N ≤ Ω, then A ≤ N ≤ Ω and
therefore N ≤M which is a contradiction.

Conversely, we prove that if there is no N as before, then M is a greatest
lower bound above A. Assume there is some admissible set B such that
A ≤ B ≤ Ω. Recall that by Lemma 3.2 there exists a unique smallest upper
bound C of B and M above A. Then

A ≤ {B,M} ≤ C ≤ Ω.

If M < C we have a contradiction and therefore M = C, and thus B ≤
M . �

Lemma 3.13. Let A be an admissible set and Ω = {Y0, . . . , Yt} be a finite
set of admissible sets such that A ≤ Ω. Then there exists M = glbA(Ω).
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Proof. Observe that the following set is finite and non-empty

S = {N admissible | A ≤ N ≤ Ω}.
This means that we may choose an element M ∈ S maximal with respect
to the ordering. By Lemma 3.12, M = glbA(Ω). �

For later use, we record now the following obvious consequence of the
definition of greatest lower bounds and Lemma 3.12:

Lemma 3.14. Let A be an admissible set and Ω = {Y0, . . . , Yt} be a finite
set of admissible sets such that A ≤ Ω. Consider A ≤ B and a subset Λ ⊆ Ω
such that B ≤ Λ. Then

glbAΩ ≤ glbAΛ = glbBΛ.

4. Connectivity of |KY | and proof of the main result for s=2

Let Y be any admissible subset of the Brin-Higman algebra on s colours.
We put

KY := K<Y = {Z | Z is admissible with Z < Y }.
Note that KY is a poset. We also consider its geometric realisation which
we denote |KY |.

Our next objective will be to prove that in the case of two colours and
|Y | big enough, this complex |KY | is t-connected. To do this, we will argue
as follows: firstly we will show that the considered complex can be “pushed
down” in the sense that its t-connectedness is equivalent to the connected-
ness of a certain subcomplex Σ4t defined in Section 4.1. Then we will use an
argument similar to Brown’s argument in [8] to prove that Σ4t is t-connected
for |Y | big enough and to deduce, in the last subsection, that 2V is of type
F∞.
In the first subsection we shall begin with some general observations, valid
for an arbitrary number s of colours.

4.1. Some general observations.

Definition 4.1. Denote by Cr the following subposet of KY :

Cr := {A ∈ KY | A < Y and A involves at most r elements of Y },
and denote by Σr the following subcomplex of |KY |:

Σr := {σ : At < At−1 < . . . < A1 < A0 | σ ∈ |KY |, At ∈ Cr}.
We denote by Σt

r the t-skeleton of Σr.

To construct the pushing-procedure we will need to control the number
of elements involved in the greatest lower bounds of certain sets of simple
contractions of Y . To do that, we will use the notion of length which we
define next.

Definition 4.2. Consider A ∈ KY . For any i ∈ Y , there is a unique m ∈ A
such that the s-cube labeled m contains the s-cube labeled i. Then i is
obtained by a certain number of successive subdivisions of m. We call that
number the length of i as descendant of A and denote it by l(A, i). We
say that two elements i, j ∈ Y are glueable in A if there exists some simple
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contraction Z < Y (of any color) contracting exactly i, j such that A ≤ Z.
Note that in that case l(A, i) = l(A, j).

We also say that i ∈ Y is locally maximal with respect to A if for any other
j ∈ Y obtained from the same m ∈ A we have l(A, i) ≥ l(A, j). Clearly, in
that case any other vertex which is glueable to i in A is also locally maximal.

For example, consider the following admissible subset A in the case of two
colours and its descendant Y :

a
b

c
A : Y : 1 2

3

4
5

6

Figure 7

Here we have l(A, 5) = 2 and 6 and 5 are glueable. So are 1 and 2. Moreover,
all the elements except of 4 are locally maximal with respect to A.

Lemma 4.3. Let A ≤ B < Y be admissible subsets. If i ∈ Y is locally
maximal with respect to A then it is also locally maximal with respect to B.

Proof. Let mA ∈ A, mB ∈ B be the elements in the respective set from
which i is obtained. It suffices to note that any j ∈ Y obtained from mB is
also obtained from mA. �

If A ≤ Y and we use the geometric description of Y as partitions of s-
cubes, then the length of i ∈ Y is related to the size of the subcube labeled i.
If two vertices i, j are glueable, then the cubes labeled i and j have exactly
the same sizes and are neighbours. This implies that, for fixed i, there are
at most 2s vertices which are glueable to i. The next result implies that this
bound in fact is 2(s− 1).

Lemma 4.4. Let A ≤ {Y0, Y1} < Y , where Y1 and Y2 are different, not
disjoint, simple contractions of Y of colours a and b. Label {1, 2} the vertices
contracted in Y0 and {2, 3} those contracted in Y1. Then the vertices labeled
1 and 3 are different and a 6= b.

Proof. We use the geometric realisation of sV . Assume that a = b. As
Y0 6= Y1 this would mean that the s-cubes labelled 1 and 3 are situated at
opposite sides of the s-cube labeled 2. This, however, is impossible since α1

a

and α2
a do not commute. In particular, if one side of an s-cube can be deleted

in a contraction, then the opposite side can not be deleted. Therefore a 6= b
and the s-cubes labeled 1 and 3 are on the sides of the s-cube labeled 2
corresponding to different directions. In particular the s-cubes labeled 1
and 3 are different. �

In the following definition we consider a special graph ΓA that will be
quite useful in the next subsections.

Definition 4.5. Let A ≤ Y be a contraction and consider the coloured
graph ΓA whose vertices are the vertices of Y , and with an edge of colour
a between vertices i, j if there is a simple contraction Z with A ≤ Z < Y
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which contracts i, j with colour a. Note that whenever A ≤ B ≤ Y then
ΓB ⊆ ΓA and the graph ΓY consists of the vertices of Y with no edges. Also,
any family of simple contractions Ω = {Y0, . . . , Yt} of Y such that A ≤ Ω
yields a subgraph of ΓA formed by the edges associated to the Yi’s. We say
that the family is connected if this subgraph is connected. Observe that if
Ω is connected, then all the contractions Yi ∈ Ω have the same length in A.
In particular, if the vertices involved in Yi are locally maximal with respect
to A then so are the vertices involved in any other Yj .

4.2. Construction of the Pushing-procedure. From now on, we assume
we have only two colours. Also recall that both are of arity 2. In this
subsection we prove the following result:

Theorem 4.6. There exists an order reversing poset map

M : {Poset of simplices of |KY |} → KY

such that for any t-simplex σ : At < At−1 < . . . < A0 we have

At ≤M(σ) ∈ C4t.

In the next lemma we describe certain connected components of the graph
ΓA. Recall that for M ∈ KY the vertices involved in contraction in M , or
just involved in M for short are the elements of Y rM .

Lemma 4.7. Let A ≤ {Y0, Y1} < Y , where Y0 and Y1 are different, not
disjoint, simple contractions of Y such that the vertices involved in them
are locally maximal with respect to some B with A ≤ B ≤ {Y0, Y1}. Then
the connected component of ΓA containing them is a square and for M =
glbA({Y0, Y1}), the vertices involved in M are precisely those in the square.
In particular, M ∈ C4.

Proof. Label with {1, 2} the vertices involved in Y0 and with {2, 3} those
involved in Y1. Note that B ≤ M ≤ Y0, Y1 so the vertices 1,2,3 are also
locally maximal respect to M . Moreover 1,2,3 are obtained from the same
element m ∈ M . We shall show that the only possibility occurring is the
picture of Figure 4, where m is the square subdivided into 4 small squares.

Consider one of the possible chains of subdivisions of m yielding 1,2,3 and
let αb be the first subdivision of the chain. If 1, 2, 3 were all in the same half,
i.e., all descendants of the same mαrb for a fixed r ∈ {1, 2} then a geometric
argument proves that also M1 = {mα1

b ,mα
2
b} ∪ (M rm) ≤ Y1, Y2, which is

impossible by the definition of greatest lower bounds. Hence we may assume
that 1,2 are partitions of mα1

b and 3 is a partition of mα2
b . Moreover, by

the commutativity relations, there are no more subdivisions corresponding
to colour b in the path of subdivisions needed to obtain 1,2,3 from m. The
fact that M ≤ Y1 implies that the first subdivision αb can be inverted, i.e.,
it must be possible to perform the successive subdivisions in such a way that
the second step consists of subdividing in direction a both halves mα1

b and
mα2

b . But again the commutativity relations imply that we may assume that
this second subdivision using colour a (i.e. subdivision in direction a) yields
precisely the line between the rectangles 1 and 2, and that the rectangles

1, 2, 3 correspond precisely to three of the rectangles mαibα
j
a for i, j = 1, 2.

It would be possible that the fourth rectangle were also subdivided, but the



FINITENESS PROPERTIES OF 2V AND 3V 13

hypothesis that the length l(M, 1) is maximal implies that this is not the
case. So the fourth is also a rectangle of the same size which we label 4 and
therefore the rooted tree yielding 1, 2, 3 from m is any of the trees of Figure
3. Clearly, the associated graph in ΓA is a square. �

Observe that the previous Lemma implies that for the contractions Z0 of
{3, 4} of colour a and Z1 of {1, 4} of colour b we also have A ≤M ≤ {Z0, Z1}.
Moreover M = glbA(Y0, Y1, Z0) = glbA(Y0, Y1, Z0, Z1).

Example 4.8. If we have more than 2 colours, the obvious corresponding
version of Lemma 4.7, that two non-disjoint simple contractions are con-
tained in a square in ΓA, will be false. Consider the following example:
Suppose we have 3 colours a, b, c, let A = {m} and Y = {1, 2, 3, 4, 5, 6, 7}
with

1 = mα2
bα

2
aα

1
c , 2 = mα1

bα
2
aα

1
c , 3 = mα1

bα
1
aα

1
c , 4 = mα1

bα
1
aα

2
c ,

5 = mα1
bα

2
aα

2
c , 6 = mα2

bα
2
aα

2
c , 7 = mα2

bα
1
a

Consider the following tree-diagram, where dotted lines represent halving in
direction a, dashed lines halving in direction b and normal lines halving in
direction c.

3 4 2 5 1 6

7

Figure 8

If we wanted all nodes of the same length, we would only have to subdivide
7 further, for example into mα2

bα
1
aα

1
a and mα2

bα
1
aα

2
a. Let Y0 be the simple

contraction of Y of colour b involving {1, 2} and Y1 the simple contraction
of Y of colour a involving {2, 3}. Note that A ≤ Y0, Y1 and any contraction
of both Y0 and Y1 has to involve contraction of either 7 elements in the first
case or 8 elements in the second. One easily checks that (in both cases)
there is no square in ΓA containing Y0 and Y1. The maximal connected
component of the graph ΓA (in both cases) is what will be called an open
book in section 5, where we consider the case of three colours in detail. We
may also represent the elements of Y as subdivisions of a cube labelled m,
the following picture ilustrates the case when Y has 7 elements.

�� ��

�� ���� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ���� ��

�� ��

�� ��

�� ��

�� ��

�� ��
3

2 1

7
4

5 6
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Figure 9
Moreover, if we enlarge in a suitable way we can easily build examples in
which the common contraction of Y0, Y1 has to involve arbitrarily many
elements of Y . For example, by looking at the associated tree-diagram,
we could insert another subdivision in direction c as in the figure below to
obtain a Y ′ with 13 vertices. As before let Y0 and Y1 simple contractions
involving {1, 2} (with colour b) and {2, 3} (with colour a) respectively. Here,
any contraction of both, Y0 and Y1, would involve 13 elements.

3 3′ 4 4′ 2 2′ 5 5′

7

1 1′ 6 6′

Figure 10

The effect of this in the representation of Figure 9 would be to halve each
of the cubes 1, 2, 3, 4, 5 and 6 (with a plane parallel to the plane between
3 and 4) to yield the new cubes 1, 1’, etc.

Proposition 4.9. Let A ≤ Ω = {Y0, . . . , Yt} where t ≥ 1 and Yi are simple
contractions of Y . Assume further that there are admissible sets A ≤ At ≤
At−1 ≤ . . . ≤ A0 such that for each i we have Ai ≤ Yi and the elements
involved in Yi are locally maximal with respect to Ai. Then for M = glbA(Ω),

M ∈ C4t.

Proof. We may subdivide Ω into its connected components

Ω =

r⋃
i=1

Ωi.

For any i ∈ {1, . . . , r} there is ji ∈ {0, 1, . . . , t} such that Aji ≤ Yli for
any Yli ∈ Ωi with the elements of Y contracted in Yli locally maximal with
respect to Aji (recall that Ωi is connected). Put Mi = glbA(Ωi).

If Ωi contains at least two different contractions, Lemma 4.7 gives that its
connected component in ΓA is a square. In particular Ωi is contained in the
set of four contractions representing the four sides of the square. Moreover,
by the observation after Lemma 4.7, Mi ∈ C4.

On the other hand, if all the elements of Ωi are equal to some Z, then
Mi = Z ∈ C2. Clearly, all Mi are pairwise disjoint so if we put M =
glbA({M1, . . . ,Mr}), then M = glbA(Ω) and Lemma 3.11 implies for r ≤ t

|vertices contracted in M | ≤
r∑
i=1

|vertices contracted in Mi| ≤ 4r ≤ 4t.
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If r = t+ 1 then the elements of Ω are pairwise disjoint and by Lemma 3.11
M ∈ C2t+2 ⊆ C4t.

�

Now we are ready to prove Theorem 4.6.

Proof. (of Theorem 4.6) Fix any map

M : KY → {Simple contractions of Y }

such that for any A ∈ KY , if i is any of the elements contracted in M(A),
then i is locally maximal with respect to A. We extend the above map M
to a map

M : {Poset of simplices of KY } → KY

as follows: for any t-simplex σ : At < At−1 < . . . < A0 we put

M(σ) := glbAt(M(At), . . . ,M(A1),M(A0)).

Proposition 4.9 and Lemma 3.14 imply that M is a well defined order
reversing poset map and that

At ≤M(σ) ∈ C4t.

�

4.3. Construction of the null-homotopy.

Remark 4.10. Denote by Xt the t-skeleton of a simplicial complex X. A
simplicial complex X is t-connected if it is 0-connected, i.e. path-connected,
and its t-th homotopy group vanishes. As πt(X,x0) = [St, s0;X,x0], this
means that every continuous pointed map

µ : (St, s0)
ν→ (Xt, x0)

it→ (X,x0)

is null-homotopic, i.e. homotopic to the constant map in (X,x0). Note,
if it is null-homotopic, then the composition µ = it ◦ ν will also be null-
homotopic. We aim to show that it is null-homotopic for |Y | big enough
and X = |KY |.

Because of the following general result the poset map M constructed in
Theorem 4.6 will be useful.

Lemma 4.11. Let P be a poset and consider an order reversing poset map

M : {Poset of simplices of P} → P,

such that for any σ : At < . . . < A0, At ≤ M(σ) in P. Then M induces a
map

ft : |P|t → |P|
which is homotopy equivalent in |P| to the inclusion it : |P|t → |P| and such
that ft(σ) is contained in the realization of the subposet of those B ∈ P such
that M(σ) ≤ B.
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Proof. Consider the map

h : {Poset of simplices of P} → P

such that h(σ) = At. Then as h(σ) ≤ M(σ) by a classical result in posets
[1, 6.4.5] we have M ' h. This means that |h| ' |M |. Denote j : P →
{Poset of simplices of P} the inclusion, then h ◦ j = 1P. Therefore |1P| '
|M ◦ j|. Considering the composition

ft : |P|t it→ |P| |j|→ |{Poset of simplices of P}| |M |→ |P|
we deduce ft = |M |◦ |j|◦it ' it. Finally note that |j| takes any simplex σ to
the geometric realisation of the poset of those simplices δ such that δ ⊆ σ.
Thus ft(σ) is contained in the realization of the subposet of those B ∈ P
such that M(σ) ≤ B. �

As a corollary of Definition 4.1, Theorem 4.6 and Lemma 4.11 we obtain the
following result.

Proposition 4.12. For any t there is a map

ft : |KY |t → |KY |
which is homotopy equivalent to the inclusion it : |KY |t → |KY | and such
that ft(σ) ⊆ Σt

4t.

Lemma 4.13. For any fixed r, t there exists a function νr(t) such that if
|Y | ≥ νr(t), the inclusion of Σt

r in |KY | is null-homotopic.

Proof. We adapt Brown’s argument in [8, 4.20] to our context. For |Y | big
enough we will construct, by induction on t, a null-homotopy

Ft : Σt
r × I → |KY |

such that Ft(−, 0) is the identity map and Ft(−, 1) is the constant map
sending everything to the point a ∈ KY . More precisely, we do the following:
we show that there are functions νr(t), µr(t) such that for |Y | ≥ νr(t)
there is a homotopy Ft as before, such that for any t-simplex σ ∈ Σt

r,

Ft(σ × I) ⊆ Σ̂µr(t), where Σ̂s is the set of subcomplexes T of Σs such that
the union of all elements of Y that are contracted in the vertex of some
simplex of T has at most s elements.

The case t = 0: We choose any simple contraction a of Y . Hence it
involves 2 vertices, i.e. elements of Y . Let A be a point of Σ0

r i.e. A is
a contraction of Y involving at most r vertices. Now, if |Y | ≥ r + 4, we
may choose a set of 2 vertices disjoint to both those contracted in A and
those contracted in a. Let b0 be a simple contraction of any colour of Y
corresponding to these two vertices. Then

A ≥ gglb(A, b0) ≤ b0 ≥ gglb(b0, a) ≤ a

is a path linking A with a in Σ̂0
r+4. Therefore we get the claim with

νr(0) = r + 4,

µr(0) = r + 4.

Induction step: We assume there is a null-homotopy Ft−1 : Σt−1
r × I →

KY . We want to extend Ft−1 to Ft. Let σ : At < At−1 < ... < A0
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be a t-simplex in Σt
r. For any face τ of σ of dimension t − 1 we have

Ft−1(τ × I) ⊆ Σ̂µr(t−1). This means that if we denote δσ = ∪t+1
i=1τi, then

∆ := Ft−1(δσ × I) = ∪Ft−1(τi × I) ⊆ Σ̂(t+1)µr(t−1).

Now, if |Y | ≥ 2 + (t + 1)µr(t − 1) there are at least 2 vertices of Y not
involved in any contraction in Ft−1(δσ × I). Let b be a simple contraction
of any colour of Y contracting these 2 vertices.

We claim that the homotopy Ft−1 can be extended to Ft : σ × I → |KY |
with

Ft(σ × I) ⊆ Σ̂2+(t+1)µr(t−1).

As b is a contraction of Y disjoint to all contractions A of Y such that
A ∈ Ft−1(δσ× I), we may consider the global greatest lower bound of b and
A which we denote gglb(A, b). Note that this is just the result of contracting
in A those elements which are contracted in b. Analogously we denote by
gglb(∆, b) the subcomplex given by gglb(A, b) for all A ∈ ∆. The same
notation is also used for simplices in ∆. Also note that for all A ∈ ∆,
gglb(A, b) ≤ b and we can always form the cone with base gglb(∆, b) and
vertex b.

We claim that the homotopy Ft(σ × I) can be built up by gluing:

i) the cylinder given by ∆ and gglb(∆, b)
ii) the cone formed by gglb(∆, b) and b.

Note that for any l-simplex τ : Al < Al−1 < . . . < A0 lying in ∆ then the
following l + 1-simplices:

gglb(Al, b) < gglb(Al−1, b) < . . . < gglb(Ai, b) < Ai < Ai−1 < . . . < A0

for i = l, . . . , 0 fill up the cylinder formed by τ and gglb(τ, b) (recall that
gglb(τ, b) is given by gglb(Al, b) < gglb(Al−1, b) < . . . < gglb(A0, b)).

Furthermore, the cone formed by gglb(τ, b) and b is also filled up via the
t+ 1-simplex

gglb(Al, b) < gglb(Al−1, b) < . . . < gglb(A0, b) < b.

We shall now explain how the above constructions yield the extension of
the homotopy :
(1) Consider the cylinder with base the simplex σ and top the simplex
gglb(σ, b) and glue to the cylinder the cone with base gglb(σ, b) and apex b.
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Figure 11

Let σ ∪ Σ̃ be the boundary of Figure 11. Then σ is homotopic to Σ̃ via a
homotopy, see Figure 11, fixing ∂σ.
(2) The following picture illustrates the homotopy Ft−1 squeezing ∂σ to the
point a.

HH
H
HH

H
HH

��
�
��

�
��

a.
∆

Figure 12

(3) Consider the cylinder with bottom ∆ and top gglb(∆, b) and glue to it
the cone with bottom gglb(∆, b) and vertex b.
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gglb(∆, b)

∆

a.

gglb(a, b).

Figure 13

Note that ∆∪Σ̃ is the boundary of Figure 13. Thus Σ̃ and ∆ are homotopy
equivalent via a homotopy, see Figure 13, fixing ∂∆ = ∂σ. Set µr(t) =
2 + (t+ 1)µr(t− 1). Then by (1) and (3) σ and ∆ are homotopy equivalent

via a homotopy, inside Σ̂µr(t), which fixes ∂σ. This completes the proof

of the fact that Ft−1 is extendable to a homotopy Ft (inside Σ̂µr(t)) that
contracts σ to the point a. Therefore the inductive step is proven for

νr(t) = µr(t) = 2 + (t+ 1)µr(t− 1).

�

Theorem 4.14. There exists a function α(t) such that if |Y | ≥ α(t), the
inclusion of |KY |t in |KY | is null-homotopic.

Proof. Consider the homotopy equivalent maps it, ft : |KY |t → |KY | given
by Proposition 4.12. Since the image of ft is contained in Σt

4t, ft factors
through the inclusion of Σt

4t in KY . But we have just proven that this
last inclusion is null-homotopic whenever |Y | ≥ ν4t(t) and therefore in that
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case ft and it are also null-homotopic. Therefore it suffices to set α(t) :=
ν4t(t). �

Corollary 4.15. There exists a function α(t) such that if |Y | ≥ α(t), KY

is t-connected.

4.4. Finiteness properties of 2V .

Now we are ready to prove that the group 2V is of type FP∞. To do that,
we will verify the conditions of [8, Cor. 3.3] with respect to the complex |A|
defined in Definition 3.1. As before, consider the filtration of |A| given by

An := {Y ∈ A | |Y | ≤ n}.
Lemmas 3.5 and 3.7 and Remark 3.6 imply that all that remains is to prove
the following theorem.

Theorem 4.16. The connectivity of the pair of complexes (|An+1|, |An|)
tends to infinity as n→∞.

Proof. We use the same argument as in [8, 4.17] i.e. note that |An+1| is
obtained from |An| by gluing cones with base KY and top Y for every
Y ∈ An+1 r An. By Corollary 4.15, if n + 1 ≥ α(t) we have that KY is
t-connected, hence (|An+1|, |An|) is t-connected. �

Theorem 4.17. The Brin group on 2 colours each of arity 2 i.e. 2V , is of
type F∞.

Proof. By Lemmas 3.5 and 3.7, Remark 3.6 and Theorem 4.16 we may apply
[8, Cor. 3.3]. �

Remark 4.18. As a by-product, we get by [8, Cor. 3.3] a new proof of the
fact that 2V is finitely presented. This was first proved in [7], where an
explicit finite presentation was constructed.

5. The case s = 3

In this section we consider Brin’s group sV for s = 3. Our objective is to
show that 3V is of type F∞ by adapting the construction of the function M
of Lemma 4.11 to the case s = 3. In particular we show that Theorem 4.6
holds withM ∈ C8t. This immediately leads to a modification of Proposition
4.12 that ft(σ) ∈ Σt

8t. The rest of the proof will be analogous to the previous
case.
As before, we fix a Y and prove that KY is t-connected if |Y | is sufficiently
large. For A < Y we consider the coloured graph ΓA as in Definition 4.5.
This time the graph is embedded in 3 dimensional real space and the three
possible colours {a, b, c} correspond to the axes of the standard coordinate
system of R3. For any subgraph ∆ ⊆ ΓA we put

glbA(∆) := glbA{Simple contractions associated to the edges of ∆}.
Consider a connected component ∆ of ΓA. The vertices of ∆ correspond,

via the geometric realisation of 3V , to subparallelepipeds of the unit cube
I, all of the same shape and size. For simplicity, we draw them as cubes
and call them subcubes. Let i be an element (i.e. a vertex) of ∆. By some
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abuse of notation we shall also label by i the subcube corresponding to the
element i of ∆.
We claim that the vertices of ∆ are inside a stack of 8 subcubes, see Figure
14. Obviously one of these subcubes corresponds to i. Observe that we do
not claim that all the subcubes in the stack correspond to elements of Y ,
only that ∆ is a set consisting of some of the subcubes in the stack. To
see that the claim holds, let i be [α1, α2] × [β1, β2] × [γ1, γ2]. The interval
A0 = [α1, α2] comes from a set of binary subdivisions of [0, 1]. The left
descendant of an interval [x, y] is [x, (x+ y)/2] and the right descendant of
[x, y] is [(x + y)/2, y]. Then A0 is a descendant of some interval JA that
is subdivided into A0 and A1 in the binary subdivision. Recall, see for
example Lemma 4.4, that each cube in a connected set can only have one
neighbour of each colour/direction. Define B1 and C1 analogously. Then
the cubes in the stack containing ∆ are precisely the cubes Ai × Bj × Ck,
where i, j, k ∈ {0, 1}.
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A stack of 8 cubes

Figure 14

For a connected component ∆ of ΓA we define the enveloping stack of ∆ to
be the smallest set U(∆) of some subcubes from the 8 cube stack defined
above such that U(∆) contains all i ∈ ∆, and the union of the elements of
U(∆) is a cube.
Note that if one of the vertices of ∆ is locally maximal with respect to some
C < Y such that A ≤ C then every vertex of ∆ is locally maximal with
respect to C. This leads to the following definition.

Definition 5.1. A connected component ∆ of ΓA is called ∗-connected if
there is some admissible set C such that A ≤ C < Y and every vertex of ∆
is locally maximal with respect to C.

The following diagram exhibits possible ∗-connected components of the
graph ΓA for A < Y . Note that parallel edges are labeled by the same
colour.
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a a a
b

b

a

b

c
�� ��

��

a

b

c
�� ��

�� ��

Figure 15

We call the graphs in Figure 15 an edge, a square, an open book and a cube
respectively.

Lemma 5.2. Let ∆ be a ∗–connected component of ΓA. Then, up to chang-
ing the colours, ∆ is one of the graphs in Figure 15. Moreover, if ∆ is not
an open book, then for M = glbA(∆) the vertices involved in M lie inside
∆. In particular, M ∈ C8.

Proof. We argue as in Lemma 4.7. We consider the element m ∈ M which
yields ∆, i.e. the vertices of ∆ are obtained from m by the halving opera-
tions. Observe that M = {m}∪(M ∩Y ). Consider the geometric realisation
of M . Then m is a subcube of the unitary cube and the enveloping stack
U(∆) lies inside m. Since M < Y we may choose some simple expansion
M < M1 ≤ Y of colour a, say. The expansion M < M1 corresponds to halv-
ing the cube m by a hyperplane of direction (i.e. colour) a. Furthermore,
this halving also yields a halving of the enveloping stack U(∆). In other
words, not all the vertices of ∆ are in the same half of m, as that would
mean that M = M1. Moreover, as ∆ is connected, this halving can be in-
verted, by using the commutativity relations, to give a simple contraction
of Y of direction a. If M1 = Y , then ∆ is an edge and M ∈ C2.
Note, that since the halving operation of m in direction a halves U(∆), we
have an edge e in ∆ with label a and vertices i, j. In particular, the elements
i and j represent neighbouring cubes in U(∆), one contained in mα1

a and the
other in mα2

a. Since e ∈ ΓA there is a contraction of Y contracting precisely
i and j. This implies that in the process of obtaining Y from M via halving
operations on m, there is another chain of halving operations starting with
halving in a direction different from a, say b. Hence, by the commutativity
relations, there exists M2 with M1 < M2 ≤ Y such that M2 consists of
halving both mα1

a and mα2
a in direction b. Clearly, this allows inversion

and therefore the above procedure for a can also be applied to b . After
performing these two subdivisions we get a stack S of four cubes. Moreover,
we may assume that there are vertices of ∆ lying in at least three of those
four cubes. Otherwise ∆ would be either disconnected or M 6= glbA(∆).
Note also that, to obtain ∆, only halving of those four cubes in a direction
c different from directions a and b is possible. So it remains to consider the
three possibilities below. Recall, we are assuming that ∆ is ∗-connected.
(1) If none of the cubes is halved, then M2 = Y , ∆ is a square and M ∈ C4.
(2) Suppose all four cubes are halved at least once. Then the rooted tree
representing the way ∆ is obtained from m, starts as the first tree in Figure
16 below. In this case we may use the commutativity relations to get a
rooted tree with halving in direction c at the beginning. Therefore, the
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assumptions that ∆ is connected and that M = glbA(∆) imply that in fact
there is only one halving in direction c. In particular, the rooted tree is
precisely the first tree in Figure 16. Thus ∆ is a cube, m yields the whole
stack of 8 cubes, M ∈ C8 and M involves precisely the vertices of ∆.
(3) Finally, assume that only three of the four cubes are halved at least once
in direction c. Then we may assume that the rooted tree representing the
halving operations done on m, begins exactly as the second tree in Figure
16 below. Note that at this point, and as a consequence of the geometric
interpretation, we know that ∆ is a subgraph of the open book B containing
the three edges labeled c. Also, B lies inside the 8 cube stack associated
to ∆. Furthermore, the elements of B correspond to elements of Y . We
shall show that ∆ is exactly the open book B. Since ∆ is connected it
suffices to show that any two neighbouring cubes in the open book B can be
contracted in Y . Consider the admissible set Ma obtained as follows: First,
halve m in direction a and assume that the second half of m, i.e. mα2

a,
contains the only one of the cubes not cut in direction c. Then perform in
mα2

a all halvings needed to reach those elements of Y that are descendents
of mα2

a. The first half of m, mα1
a, is not cut anymore. Then M ≤ Ma,

Ma = {mα1
a} ∪ (Ma ∩ Y ).

Observe that, in the first half of m, there are only two colours in the
path needed to obtain the elements of ∆ ∩ ΓMa from Ma. As ∆ ∩ ΓMa is
∗-connected in ΓMa , we may apply Lemma 4.7 and deduce that the square of
the open book B with edges labeled by b and c is in ∆. The same argument
with b substituted by a implies that the square of the open book B with
edges labeled by c and a is in ∆. Thus ∆ is the open book B.

Figure 16

�

We are now ready to prove the analogue to Theorem 4.6 with M ∈ C8t.

Theorem 5.3. Let s = 3. There exists an order reversing poset map

M : {Poset of simplices of |KY |} → KY

such that for any t-simplex σ : At < At−1 < . . . < A0 we have

At ≤M(σ) ∈ C8t.

Proof. We split the proof into three steps. Fix a linear ordering on the
colours a, b, c.

(1) The definition of M on vertices of KY . For each admissible A < Y we
define a designated edge M(A) as follows:
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Consider the graph ΓA. We define M(A) as an edge of ΓA such that if
ΓA = ΓB for some B < Y , then M(A) = M(B). If there is some open
book between the ∗-connected components of ΓA, we define M(A) to be the
middle edge of the open book with middle edge of smallest possible colour
amongst those open books which are ∗-connected components of ΓA.

c cM(A)

a b

a b

Figure 17: The open book extended

If ΓA does not have an open book as a ∗-connected component, but contains
a ∗-connected component, which is a separate edge e, i.e. case 1 of Figure
15, we define M(A) = e. Again, there might be more than one such edge e
and we choose e of smallest possible colour.
If ΓA does not contain ∗-connected components, which are open books or
separate edges, we choose M(A) to be an edge of the smallest possible colour
of a ∗-connected component of ΓA.

From now on we write ∆A for the ∗-connected component of ΓA such that
M(A) ∈ ∆A. We can further assume that if ∆A = ∆B then M(A) = M(B).

(2) Let A = Ar < Ar−1 < . . . < A0 be contractions of Y such that all
M(Ai) belong to ∆A. Recall that each M(Ai) is a simple contraction of Y .
Let Ω = {M(Ar), . . . ,M(A0)} and put N = glbA(Ω). We aim to show that
N ∈ C8 and that the vertices of Y involved in N are inside ∆A.
Observe that ∆A is ∗-connected. So it must be one of the graphs of Figure
15. If it is an edge, a square or a cube then our claim that N ∈ C8 follows
from Lemma 5.2. So we may assume that ∆A is an open book. We have

∆A = ∆A ∩ ΓAr ⊇ . . . ⊇ ∆A ∩ ΓA0 .

The definition of M yields that if ∆A = ∆A ∩ ΓAr = . . . = ∆A ∩ ΓA0 then
M(Ar) = . . . = M(A0). In this case N = M(Ar) ∈ C2. So we may assume
that there is some 0 ≤ i < r such that

∆A = ∆A ∩ ΓAr = . . . = ∆A ∩ ΓAi+1 ) ∆A ∩ ΓAi .

Denote B = Ai. We have

∆B ⊆ ∆A ∩ ΓB ( ∆A.

Moreover, by the definition of M , M(A) = M(Ar) = . . . = M(Ai+1) is the
middle edge of the open book ∆A.
We claim that ∆A ∩ ΓB is a subgraph of one of the following two graphs:
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c cc
a

a

Γ2 :

c cc
b

b

Γ1 :

Figure 18

Observe that ∆A∩ΓB is not connected. Indeed, in the process of obtaining B
from A there was a cutting of a cube containing U(∆A) which halved U(∆A).
The structure of ∆A as an open book with three parallel edges c implies that
such a halving cannot be in direction c. The case when the direction of this
halving is a corresponds to Γ1 (see Fig. 18), i.e. ∆A∩ΓB ⊆ Γ1 and the case
when the direction is b corresponds to Γ2, i.e. ∆A ∩ΓB ⊆ Γ2. Alternatively,
consider the second tree in Figure 16. The commutativity relations do not
allow us to move c to the top, whereas having a or b at the top yields a
disconnected graph. A similar argument shows that there is an expansion

Ai+1 < B̃ such that ∆A ∩Γ
B̃

= Γk, where we have fixed one k ∈ {1, 2} such
that ∆A ∩ ΓB ⊆ Γk.

For any 0 ≤ j ≤ i we also have M(Aj) ∈ ∆Aj ⊆ ∆A ∩ ΓB. Then since
∆A ∩ ΓB ⊆ Γk we have Ω ⊂ (∆A ∩ ΓB) ∪ {M(A)} ⊆ Γk = ∆A ∩ Γ

B̃
⊆ Γ

B̃
.

Hence A < B̃ ≤ Ω and so

glb
B̃

(Γk) ≤ glb
B̃

(Ω) = N.

Now split Γk = D1∪D2 into its connected components, where D1 is the edge
and D2 is the square. Note that D1 and D2 are ∗-connected components
of Γ

B̃
, hence Lemma 5.2 implies thet glb

B̃
(Di) involves (i.e. contracts) 2i

vertices ( i.e. elements) of Y . Then by Lemma 3.11 glb
B̃

(D1∪D2) contracts
2 + 4 = 6 vertices of Y . Hence N ∈ C6 ⊆ C8.

(3) The definition of M on a simplex of KY :
Let σ : At < At−1 < . . . < A0 be a simplex of KY and t ≥ 1. Thus
ΓA0 ≤ . . . ≤ ΓAt−1 ≤ ΓAt and we have already defined M(Ai) as an edge
of ΓAi for all i. Let Ω = {M(At),M(At−1), . . . ,M(A0)}, which is a set of
edges of ΓAt .
Consider the following partition of Ω:
Put α1 = t and

Ω1 = Ω ∩∆Aα1
.

Assume Ωr−1 is defined. If
⋃r−1
i=1 Ωi 6= Ω, choose the largest j ∈ {0, ..., t}

such that

M(Aj) ∈ Ω r (
r−1⋃
i=1

Ωi).

Rename Aj to Aαr and put Ωr = Ω ∩∆Aαr . Hence at each step we have a
subchain (i.e. subsimplex) of σ satisfying the conditions of (2).
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At some point we will have Ω =
⋃k
i=1 Ωi. Let

Ni := glbAαi
(Ωi).

By step (2), Ni ∈ C8 and the vertices of Y involved in Ni are contained
in ∆Aαi

. Now we claim that these Ni are pairwise disjoint contractions of
Y . To see this, let i 6= j. We may assume that Aαi ≤ Aαj and therefore
ΓAαi ⊇ ΓAαj . As ∆Aαi

is a ∗-connected component in ΓAαi , we deduce

that either ∆Aαi
and ∆Aαj

are disjoint (and in this case Ni and Nj are

also disjoint) or ∆Aαj
⊆ ∆Aαi

. But the second case is impossible by the

construction of the partition above.
Next we define

M(σ) = glbA(Ω).

Clearly,
M(σ) = glbA({N1, . . . , Nk})

and, if k ≤ t, then
M(σ) ∈ C8k ⊆ C8t.

Finally, if k = t + 1 then all Ωi contain precisely one edge, so for all i we
have Ni = M(Ai) and so M(σ) ∈ C2(t+1) ⊆ C8t.

�

As a corollary we get the following modified version of Proposition 4.12.

Corollary 5.4. For any t there is a map

ft : |KY |t → |KY |
which is homotopy equivalent to the inclusion it : |KY |t → |KY | such that
ft(σ) ⊆ Σt

8t.

From now on we can proceed analogously to the case s = 2. As a first step
we have a three-dimensional analogue to Theorem 4.14:

Corollary 5.5. Let s = 3. There exists a function α(t) such that if |Y | ≥
α(t), the inclusion of |KY |t in |KY | is null-homotopic.

Proof. Follow the proofs of Theorem 4.14 and Lemma 4.13 substituting
Proposition 4.12 with Corollary 5.4. �

Theorem 5.6. The Brin group 3V on 3 colours of arity 2 is of type F∞.

Proof. The proof follows the proof of Theorem 4.17. The main point is the
construction of the poset map M of Theorem 5.3. Applying Corollary 5.5,
the rest follows as before. �

References

[1] D. J. Benson, Representations and cohomology II, Cohomology of groups and modules
2nd ed. Cambridge Studies in Advanced Mathematics, 31. Cambridge University
Press, Cambridge, 1998

[2] M. Bestvina, B. Brady, Morse theory and finiteness properties of groups, Invent.
Math. 129 (1997), no. 3, 445–470.

[3] R. Bieri, Homological dimension of discrete groups 2nd ed. Queen Mary College Math-
ematical Notes, Queen Mary College, Department of Pure Mathematics, London,
1981
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