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Abstract. We define a family of groups that generalises Thompson’s
groups T and V, and also those of Higman, Stein and Brin. For groups
in this family we study centralisers and conjugacy classes of finite sub-
groups. We use this to show that these groups have a slightly weaker
property, quasi-F∞, to that of a group possessing a finite type model
for the classifying space for proper actions EG. We also generalise some
well-known properties of ordinary cohomology to Bredon cohomology.

1. Introduction

Thompson’s groups F , T and G (also denoted V ), which can be defined
as certain homeomorphism groups of the unit interval, the circle and the
Cantor-set, respectively, have received a large amount of attention in recent
years. There are many interesting generalisations of these groups, such as
the Higman-Thompson groups Fn,r, Tn,r, Gn,r (Recall that T = T2,1 andG =
G2,1), the T - and G-groups defined by Stein [22] and the higher dimensional
Thompson groups sV = sG2,1 defined by Brin [4]. All these groups contain
every finite group, are finitely presented and with the exception of sV for
s ≥ 4, are known to be of type FP∞ [5, 22, 10, 3]. Furthermore, they
contain free abelian groups of countable rank. In this paper we consider
automorphism groups of certain Cantor algebras which include Higman-
Thompson, Stein and Brin groups.

As in the original exposition by Higman [8] and in Brown’s proof [5] that
Fn,r, Tn,r and Gn,r are of type FP∞, we consider a Cantor algebra Ur(Σ) on
a so called valid set of relations Σ and define groups Gr(Σ) as follows: the
elements of Gr(Σ) are bijections between admissible subsets of Ur(Σ). One
can show that these groups are finitely generated, see [16]. Provided that
the relations in Σ are order preserving we can also define the groups Tr(Σ),
which are given by cyclic order preserving bijections. One can also define
generalisations of Fn,r.

The admissible subsets of Ur(Σ) form a poset and the groups Tr(Σ) and
Gr(Σ) act on the geometric realisation |Ar(Σ)| of this poset (for the original
Thompson-Higman algebras this was already used by Brown in [5]).

Let G be either Tr(Σ) or Gr(Σ). For every finite subgroup Q we consider
the fixed point sets Ar(Σ)Q. The Q-set structure of every admissible subset
Y ∈ Ar(Σ)Q is determined by its decomposition into transitive Q-sets. We
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show (Theorem 4.3 and Lemma 7.7) that there are finitely many conjugacy
classes in G of subgroups isomorphic to Q. Furthermore we show (Theorem
4.5) that there is a central extension

K � CGr(Σ)(Q) � Gr1(Σ)× . . .×Grt(Σ)

with finite kernel, where the r1, ..., rt are integers uniquely determined by
Q. The analogue for Tr(Σ) also generalises a result of Matucci [17, Theorem
7.1.5] for the original Thompson group T . In particular, we have (Theorem
7.5) that, for a certain l also determined by Q, there is a central extension

K � CTr(Σ)(Q) � Tl(Σ)

with cyclic kernel of finite order.
Recently a variant of the Eilenberg-Mac Lane space, the classifying space
with respect to a family of subgroups, has been the focus considerable at-
tention. Through its connection with important conjectures such as the
Baum-Connes conjecture, the classifying space for proper actions has been
well researched in recent times. Let X be a G-CW-complex. It is said to be
a model for EXG, the classifying space with isotropy in the family X if XK

is contractible for K ∈ X and XK is empty otherwise. The classifying space
X for a family satisfies the following universal property: whenever there is
a G-CW-complex Y with isotropy lying in the family X, there is a G-map
Y → X, which is unique up to G-homotopy. In particular, EXG is unique
up to G-homotopy equivalence.
For the class F of finite subgroups we denote EXG by EG, the classifying
space for proper actions. We say a group is of type F∞ if it admits a finite
type model for EG. We show:

Theorem 3.1. |Ar(Σ)| is a model for EGr(Σ).

(but these groups cannot possess any finite dimensional model).The alge-
braic mirror to classifying spaces with isotropy in a family is given by Bre-
don cohomology. We shall review its properties in Section 2. Many notions
from ordinary cohomology have a Bredon analogue. For example, we say a
group G is of type Bredon-FP∞ if there is a Bredon-projective resolution of
the constant Bredon-module Z(−) with finitely generated Bredon-projective
modules. The connection to classifying spaces and to ordinary cohomology
is given by the following two results:

Theorem 1.1. [15, Theorem 0.1] A group G has a finite type model for
a classifying space with isotropy in a family if and only if the group is of
type Bredon-FP∞ and there is a model for a classifying space with finite
2-skeleton.

In particular we say a group is of type FP∞ if it is of type Bredon-FP∞ for
the family of finite subgroups.

Theorem 1.2. [14, Theorem 4.2] A group G admits a finite type model for
EG if and only G has finitely many conjugacy classes of finite subgroups
and for each finite subgroup K of G the centraliser CG(K) is of type FP∞
and finitely presented.

Equivalently, G admits a finite type model for EG if and only it is of type
FP∞ and centralizers of finite subgroups are finitely presented. Since the
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groups we are considering do not have a bound on the orders of their finite
subgroups, we need to weaken the condition on the number of conjugacy
classes and require that for each finite subgroup Q of G there are only finitely
many conjugacy classes of subgroups isomorphic toQ. Groups satisfying this
slightly weaker condition are said to be of type quasi-FP∞. Note, that for
groups with a bound on the orders of its finite subgroups this definition is
identical to FP∞. In [12] it was shown that there are examples of groups of
type FP∞, which are not of type FP∞. These examples are virtually torsion
free, admit a finite dimensional model for EG and can be constructed to
have either infinitely many conjugacy classes of finite subgroups or to have
centralisers of finite subgroups not of type FP∞ . There are a number of
classes of groups of type FP∞ admitting cocompact models for EG including
Gromov hyperbolic groups [18], Out(Fn) [23] or elementary amenable groups
[11].
Using our results on centralizers and conjugacy classes of finite subgroups
we show:

Theorem 7.1. Gr(Σ) is of type quasi-FP∞ for any r if and only if it is of
type FP∞ for any r.

Analogously we have:

Theorem 7.8. Tr(Σ) is of type quasi-FP∞ for any r if and only if it is of
type FP∞ for any r.

We also consider the geometric analogue, to be of type quasi-F∞, and prove
the analogues to Theorems 7.1 and 7.8.

The paper is structured as follows: In Section 2 we define the Cantor algebras
and the corresponding generalisations of Thompson’s groups G and T. We
then use this Cantor algebra to build a model for EG in Section 3. In
Section 4 we prove the results on centralizers and conjugacy classes of finite
subgroups that will be used later.

In Section 5 we collect all necessary background on Bredon cohomology
with respect to an arbitrary family, and on Bredon cohomological finiteness
conditions for modules. We prove an analogue to the Bieri-Eckmann crite-
rion for property FPn for modules. In Section 7 we specialise to the case of
the family of finite subgroups and define what it means for a group to be
quasi-FP∞ and quasi-F∞. Finally, the main results are proven in Section 7.

Acknowledgements. The authors wish to thank D.H. Kochloukova for
very fruitful discussions, without which, in fact, this work probably would
not have happened.

2. Generalisations of Thompson-Higman groups

As mentioned in the introduction, the generalised Thompson-Higman groups
can be viewed as certain automorphisms groups of Cantor algebras. We
shall begin by defining these algebras. We use the notation of [10], Section
2. In particular, we consider a finite set {1, . . . , s} whose elements are called
colours. To each colour i we associate an integer ni > 1 which is called
its arity. We say that U is an Ω-algebra, if, for each colour i, the following
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operations (we let all operations act on the right) are defined in U (for detail,
see [7] and [10]):

i) One ni-ary operation λi:

λi : Uni → U.

We call these operations ascending operations, or contractions.
ii) ni 1-ary operations α1

i , . . . , α
ni
i :

αji : U → U.

We call these operations 1-ary descending operations.

We denote Ω = {λi, αji}i,j . For each colour i we also consider the map
αi : U → Uni given by

vαi := (vα1
i , vα

2
i , . . . , vα

ni
i )

for any v ∈ U . These maps are called descending operations, or expansions.
For any subset Y of U , a simple expansion of colour i of Y is obtained by
substituting some element y ∈ Y by the ni elements of the tuple yαi. A sim-
ple contraction of colour i of Y is the set obtained by substituting a certain
collection of ni distinct elements of Y , say {a1, . . . , ani}, by (a1, . . . , ani)λi.
We also use the term operation to refer to the effect of a simple expansion,
respectively contraction on a set .

For any set X there is a Ω-algebra, free on X, which is called the Ω-word
algebra onX and is denoted byWΩ(X). An admissible subset A ⊆WΩ(X) is
a subset that can be obtained after finitely many expansions or contractions
from the set X.
Descending operations can be visualised by tree diagrams, see the following
example with X = {x}, s = 1 and n1 = 2 :

α1 α2

α2α1

x

The set A = {xα1α1, xα1α2, xα2} is an admissible subset. In pictures we
often omit the maps and label the nodes by positive integers as follows:

1 2

3

From now on we fix the set X and assume it is finite. We consider the
variety of Ω-algebras satisfying a certain set of identities as follows:

Definition 2.1. Let Σ be the following set of laws in the alphabet X.
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i) For any u ∈ WΩ(X), any colour i, and any ni-tuple (u1, . . . , uni) ∈
WΩ(X)ni ,

uαiλi = u,

(u1, . . . , uni)λiαi = (u1, . . . , uni).

The set of all these relations is denoted Σ1

ii) A certain, possibly empty, set

Σ2 := {rij | 1 ≤ i < j ≤ s}

of identifications between sets of simple expansions of wαi and wαj
for any w ∈WΩ(X) which do not depend on w.

When factoring out the fully invariant congruence q generated by Σ, we
obtain an Ω-algebra WΩ(X)/q satisfying the identities in Σ. For detail of
the construction the reader is referred to [10, Section 2].

Definition 2.2. Let r = |X| and Σ as in Definition 2.1. Then the algebra
WΩ(X)/q = Ur(Σ) is called a Cantor-Algebra.

Moreover, there is an epimorphism of Ω-algebras

WΩ(X) � Ur(Σ)

A 7→ Ā.

As in [10] we say that Σ is valid if for any admissible Y ⊆WΩ(X), we have
|Y | = |Ȳ |. This condition implies that Ur(Σ) is a free object on X in the
class of those Ω-algebras which satisfy the identities Σ above.
If the set Σ used to define Ur(Σ) is valid, we also say that Ur(Σ) is valid.

Example 2.3. Higman [8] defined an algebra Vn,r with |X| = r, s = 1 and
arity n as above with Σ2 being empty. This algebra, which we call Higman
algebra, is used in the original construction of the Higman-Thompson-groups
Gn,r. For detail see also [5]. In particular, these algebras are valid [8, Section
2].

Example 2.4. Higman’s construction for arity n = 2 can be generalised as
follows [10, Section 2]: Let s ≥ 1 and ni = 2 for all 1 ≤ i ≤ s. Hence we
consider the set of s colours {1, . . . , s}, all of which have arity 2, together
with the relations: Σ := Σ1 ∪ Σ2 with

Σ2 := {αliαtj = αtjα
l
i | 1 ≤ i 6= j ≤ s; l, t = 1, 2}.

Then Σ is valid (see [10] Lemma 2.9).
Furthermore one can also consider s colours, all of arity ni = n, for all
1 ≤ i ≤ s. Let

Σ2 := {αliαtj = αtjα
l
i | 1 ≤ i 6= j ≤ s; 1 ≤ l, t ≤ n}.

Using the same arguments as in [10, Section 2] one can show that the Σ
obtained in this way is also valid.

We call the resulting Cantor algebras Ur(Σ) Brin algebras.

The following tree-diagram visualises the relations in Σ2. Here r = 1, s = 2
and n = 2. We express an expansion of colour 1 with dotted lines and an
expansion of colour 2 by straight lines.
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x

1 23 4

x

1 32 4

Definition 2.5. Let Σ be valid and consider Y,Z ⊆ Ur(Σ). If Z can be
obtained from Y by a finite number of simple expansions then we say that
Z is a descendant of Y and denote

Y ≤ Z.
Conversely, Y is called an ascendant of Z and can be obtained after a finite
number of simple contractions. Note that this implies that if either of the
sets Y or Z is admissible, then so is the other. In fact, the set of admissible
subsets of Ur(Σ) is a poset with respect to the partial order ≤. This poset
is denoted by Ar(Σ).

It is easy to prove that any admissible subset is a basis of Ur(Σ) (see [10]
Lemma 2.5).

Remark 2.6. Let Σ be valid and assume that we have s colours of arities
{n1, . . . , ns}. Let r be a positive integer. Observe that the cardinality of
any admissible subset of Ur(Σ) must be of the form m ≡ r mod d for

d := gcd{ni − 1 | i = 1, . . . , s}.
Moreover, for any m ≡ r mod d, there is some admissible subset of cardi-
nality m. And as admissible subsets are bases, we get Ur(Σ) = Um(Σ).

Definition 2.7. Let B,C be admissible subsets of Ur(Σ). We say that T
is the unique least upper bound of B and C if B ≤ T , C ≤ T and for all
admissible sets S such that B ≤ S and C ≤ S we have T ≤ S.
We say, by abusing notation a little, that Ur(Σ) is bounded if for all admis-
sible subsets B,C such that there is some admissible A with A ≤ B,C there
is a unique least upper bound of B and C.

One can also define greatest lower bounds, but this places a stronger restric-
tion on the algebra, see [10]. Moreover, note that a priori we require the
existence of an upper bound only when our sets have a lower bound (A) but
this turns out to be not too restrictive:

Lemma 2.8. Let Ur(Σ) be valid and bounded. Then any two admissible
subsets have some (possibly not unique) common upper bound.

Proof. Use the same proof as in [10, Proposition 3.4]. �

Example 2.9. The Brin algebras defined in Example 2.4 are valid and
bounded. The existence of a unique least upper bound for n = 2 is shown
in [10, Lemma 3.2]. The general case is analogous.

Example 2.10. Let P ⊆ Q>0 be a finitely generated multiplicative group.
Then by a result of Brown, see [22, Proposition 1.1], P has a basis of the
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form {n1, . . . , ns} with all ni ≥ 0 (i = 1, ..., s). Now consider Ω-algebras
on s colours of arities {n1, . . . , ns} and let Σ = Σ1 ∪ Σ2 with Σ2 the set of
identities given by the following order preserving identification:

{α1
iα

1
j , . . . , α

1
iα

nj

j , α
2
iα

1
j , . . . , α

2
iα

nj

j , . . . , α
ni
i α

1
j , . . . , α

ni
i α

nj

j } =

{α1
jα

1
i , . . . , α

1
jα

ni
i , α

2
jα

1
i , . . . , α

2
jα

ni
i , . . . , α

nj

j α
1
i , . . . , α

nj

j α
ni
i },

where i 6= j and i, j ∈ {1, ..., s}.
The Cantor algebras Ur(Σ) thus obtained will be called Brown-Stein alge-
bras.

Note that, as {n1, . . . , ns} is a basis for P , the ni are all distinct. Hence,
when visualising the identities in Σ2 for the Brown-Stein algebra, it suffices
to only use one colour, as the arity of an expansion already determines the
colour. In the following example let r = 1, s = 2, n1 = 2 and n2 = 3.

1 2 3 4 5 6 1 2 3 4 5 6

Lemma 2.11. The Brown-Stein algebras are valid and bounded.

Proof. This is Proposition 1.2 (due to K. Brown) in [22]. �

In fact, in [22] Lemma 2.8 is proven directly, i.e that any two admissible
subsets have some common upper bound.

We can now define the generalised Thompson-Higman groups. Recall, that
in a valid Cantor algebra Ur(Σ), admissible subsets are bases.

Definition 2.12. Let Ur(Σ) be a valid Cantor algebra. We define Gr(Σ) to
be the group of those Ω-algebra automorphisms of Ur(Σ), which are induced
by a map V → W , where V and W are admissible subsets of the same
cardinality.

Example 2.13. If Ur(Σ) is a Higman algebra as in Example 2.3, we retrieve
the original Higman-Thompson-groups Gn,r. Let Ur(Σ) be a Brin algebra on
s colours of arity 2 as in Example 2.4. Then the groups constructed are Brin’s
[4] generalisations sV of Thompson’s group V = G2,1. The description of sV
as automorphism groups of a Cantor algebra can be found in [10]. Finally,
the groups Gr(Σ), when Ur(Σ) is a Brown-Stein algebra as in Example 2.10,
were considered in [22].

Suppose now that the elements of the set X are ordered. It can be seen that
this order is inherited by certain elements in WΩ(X) including all admissible
subsets, see for example [5] or [8]. If the relations in Σ preserve that ordering,
then we also have an inherited order on the admissible subsets of Ur(Σ). We
shall call this the induced ordering.
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Definition 2.14. Suppose we have a Cantor algebra Ur(Σ) where Σ pre-
serves the induced ordering. We may define subgroups Fr(Σ) and Tr(Σ)
of Gr(Σ) as follows. We let Fr(Σ) be the group of order preserving auto-
morphisms between ordered admissible subsets of the same cardinality and
Tr(Σ) the group of cyclic order preserving automorphisms between ordered
admissible subsets of the same cardinality.

Example 2.15. For Ur(Σ) a Higman algebra of Example 2.3 the definition
above yields the groups Fn,r and Tn,r as in [5]. Recall that Thompson’s
groups are F = F2,1 and T = T2,1.
Let Ur(Σ) be a Brown-Stein algebra as in Example 2.10 In this case, Σ is
order preserving, so we may define the groups Fr(Σ) and Tr(Σ), which are
considered in [22].
Since Σ2 in the definition of the Brin algebra of Example 2.4 is not order-
preserving, it makes no sense to define the groups Fr(Σ) or Tr(Σ) for this
algebra.

Remark 2.16. Note, that if definable, the groups Fr(Σ) are torsion-free. In
both cases mentioned in Example 2.15, the resulting groups Fr(Σ) are known
to be of type FP∞ and finitely presented [5, 22].

3. A model for EG for generalised Thompson groups

From now on we fix a valid Σ and a finite positive integer r. Also assume that
the Cantor algebra Ur(Σ) is bounded. We shall use the poset of admissible
subsets of Ur(Σ) to construct a model for EGr(Σ). In this section we give a
quite elementary proof of the following result.

Theorem 3.1. The geometric realisation of the poset of admissible subsets
is a model for EGr(Σ).

We fix an admissible subset X ⊆ Ur(Σ) of cardinality r.

Lemma 3.2. For any finite Q ≤ Gr(Σ) there exists some admissible subset
Z such that ZQ = Z. Moreover we may assume X ≤ Z.

Proof. For every q ∈ Q choose a common upper bound Tq of X and Xq.
Then put Zq := Tqq

−1 and let Y be an upper bound of

{Zq | q ∈ Q}.
Note that X ≤ Z1 = T1 and for any q ∈ Q,

X ≤ Tq = Zqq ≤ Y q.
Therefore we may choose Z the unique least upper bound of {Y q | q ∈ Q}.
By definition of least upperbound we get ZQ = Z. �

Proposition 3.3. Any two elements in Ar(Σ)Q have an upper bound in
Ar(Σ)Q.

Proof. Let Y,Z ∈ Ar(Σ)Q. We begin by showing that there are admissible
sets Y1, Z1 ∈ Ar(Σ)Q such that Y1 is an upper bound of X and Y and Z1 is
an upper bound of X and Z. It suffices to prove the existence of Y1. Take
an upper bound Y2 ∈ Ar(Σ) of X and Y and consider

{Y2q
−1 | q ∈ Q}.
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Let Y3 ∈ Ar(Σ) be an upper bound of this set. Then, for any q ∈ Q,

Y2 ≤ Y3q.

Therefore X ≤ Y3q. This implies that we may choose Y1 to be the least
upper bound of

{Y3q | q ∈ Q}.

Clearly, Y,X ≤ Y1. Again, the definition of least upper bound implies that
Y1 ∈ Ar(Σ)Q.

Now, let T be the least upper bound of Y1 and Z1. Then for any q ∈ Q

Y1 = Y1q ≤ Tq,

Z1 = Z1q ≤ Tq

so we get T ∈ Ar(Σ)Q. �

Proof. (of Theorem 3.1) Lemmas 3.2 and 3.3 imply that for any finite
subgroup Q ≤ Gr(Σ) the poset Ar(Σ)Q is non-empty and directed, thus
|Ar(Σ)|Q = |Ar(Σ)Q| ' ∗. Moreover for any V ∈ Ar(Σ),

StabGr(Σ)(V ) = {g ∈ Gr(Σ) | V g = V }

is contained in the group of permutations of the finite set V , thus it is finite.
This implies that for any H ≤ Gr(Σ), Ar(Σ)H = ∅ unless H is finite. �

This model is not of finite type, but there is a filtration of |Ar(Σ)Q| by finite
type subcomplexes, exactly as in the construction in [5, Theorem 4.17]:

Proposition 3.4. For any finite Q ≤ Gr(Σ) there is a filtration of |Ar(Σ)Q|

. . . ⊂ |Ar(Σ)Q|n−1 ⊂ |Ar(Σ)Q|n ⊂ |Ar(Σ)Q|n+1 ⊂ . . .

such that each |Ar(Σ)Q|n/CGr(Σ)(Q) is finite.

Proof. Let

|Ar(Σ)Q|n := {Y ∈ Ar(Σ)Q | |Y | ≤ n}.

Consider Y, Z ∈ Ar(Σ)Q with |Y | = |Z| and isomorphic as Q-sets. This
means that there is a Q-bijection

σ : Y → Z.

Let g ∈ Gr(Σ) be the element given by yg = yσ for each y ∈ Y . Then for
any q ∈ Q, (yq)g = (yq)σ = yσq = ygq. This means that the commutator
[g, q] acts as the identity on the admissible set Y and therefore [g, q] = 1.
Hence g ∈ CGr(Σ)(Q). As for any m ≤ n there are finitely many possible
Q-sets of cardinality m, the result follows. �

Remark 3.5. Provided that Σ is order-preserving, Theorem 3.1 and Propo-
sition 3.4 can be restated replacing Gr(Σ) with Tr(Σ).
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4. Centralisers and conjugacy classes of finite subgroups for
Gr(Σ) and Tr(Σ).

Let Q ≤ Gr(Σ) be a finite subgroup. In this section we give a more de-
tailed analysis of the poset Ar(Σ)Q to determine CGr(Σ)(Q) and the number
of conjugacy classes of finite subgroups. This will be useful later to prove
our main result on the kind of cohomological finiteness properties that these
groups may satisfy. Let {w1, . . . , wt} be the set of lengths of all the possible
transitive permutation representations of Q. Any Y ∈ Ar(Σ)Q is a finite
Q-set so it is determined by its decomposition in transitive Q-sets. If we
take one of those sets and apply the operation αi for a fixed colour i to
each of its elements, we obtain a new admissible subset which is also fixed
by Q. We say that this is a simple Q-expansion of Y . More explicitly, the
admissible set obtained from Y is:

Y r {yq | q ∈ Q} ∪ {yqαji | q ∈ Q, 1 ≤ j ≤ ni}
for a certain y ∈ Y .

Conversely, if we choose ni different orbits of the same type (i.e., cor-
responding to the same permutation representation) in Y , then we may
contract them to a single orbit (of the same type), we call this a simple
Q-contraction. Note that the admissible subset obtained this way, again lies
in Ar(Σ)Q.

Large parts of the next three results can be found in [8, Section 6]. We
shall, for the reader’s convenience, recall the arguments.

Lemma 4.1. Let Y,Z ∈ Ar(Σ)Q with Y < Z and assume there is no
admissible subset C ∈ Ar(Σ)Q with Y ≤ C ≤ Z. Then Z is a simple
Q-expansion of Y . Hence Y is a simple Q-contraction of Z.

Proof. We may choose a chain of simple expansions

Y < Y1 < . . . < Yr < Z.

Let w ∈ Y be the vertex expanded in the first simple expansion Y < Y1 and
W ⊆ Y be the Q-orbit with w ∈ W . Assume also that this first expansion
corresponds to the colour i. Then as Z contains certain descendants of
{wαi} and it is Q-invariant it must also contain the analogous descendants
of {uαi | u ∈W}. Therefore if C denotes the simple Q-expansion consisting
of expanding W by αi, then Y < C ≤ Z. As C ∈ Ar(Σ)Q, we deduce by the
hypothesis that C = Z. �

Proposition 4.2. For any finite subgroup Q ≤ G(Σ), there is a uniquely
determined set of integers π(Q) := {r1, . . . , rt} with 0 ≤ rj ≤ d and

t∑
j=1

rjwj ≡ r mod d

such that there is an admissible subset Y ∈ Ar(Σ)Q with |Y | =
∑t

j=1 rjwj.

Moreover, any other element in Ar(Σ)Q can be obtained from Y by a finite
sequence of simple Q-expansions or Q-contractions.

Proof. First, note that by 3.2, Ar(Σ)Q 6= ∅. Now choose some Z ∈ Ar(Σ)Q

and decompose it as a disjoint union of transitive Q-sets. Let kj be the
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number of transitive sets in this decomposition which are of type j, i.e
which correspond to the same permutation representation. Observe that
whenever we apply simple Q-contractions or Q-expansions to Z, if the set
thus obtained has mj transitive Q-sets of type j, then mj ≡ kj mod d. Note
also that

r ≡ |Z| =
t∑

j=1

kjwj mod d.

Let

rj =

{ 0, if kj = 0

d, if 0 6= kj ≡ 0 mod d

l with 0 < l < d and l ≡ kj mod d, otherwise.

By successively performing simple Q-contractions or Q-expansions of Z
we may get an admissible set Y such that the number of transitive Q-sets
of type j in Y is exactly rj . Observe that the rj are uniquely determined,
whereas Y is not. Finally, 3.3 implies that for any other C ∈ Ar(Σ)Q, there
is an upper bound, say D, of Y and C with D ∈ Ar(Σ)Q which means that

Y ≤ D ≥ C.
By Lemma 4.1 we may choose chains

Y = D0 < D1 < . . . < Dl1 = D = C0 > C1 > . . . > Cl2 = C

such that each step consits of a simple Q-expansion/contraction and we are
done. �

Theorem 4.3. Let Q1, Q2 ≤ Gr(Σ) be finite subgroups with Q1
∼= Q2. Then

Q1 and Q2 are conjugate in Gr(Σ) if and only if π(Q1) = π(Q2).
In particular, there are only finitely many conjugacy classes of subgroups
isomorphic to Q1.

Proof. Fix an isomorphism α : Q1 → Q2. Assume first that π(Q1) = π(Q2).
Then there are admissible subsets V1, V2 with Vi ∈ Ar(Σ)Qi having the same
number of elements and moreover the same structure as Qi-sets. This means
that there is a bijection ψ : V1 → V2 such that for any q ∈ Q1 and v ∈ V1,
(vq)ψ = vψqα. Thus ψ yields an element g ∈ Gr(Σ) with g−1qg = qα.

Conversely, assume Q2 = g−1Q1g with g ∈ Gr(Σ). Then for any V1 ∈
Ar(Σ)Q1 , V1g ∈ Ar(Σ)Q2 . Moreover, g induces an isomorphism as Qi-sets
so the orbit structure of the minimal elements of Ar(Σ)Q1 and Ar(Σ)Q1 has
to be the same.

�

Lemma 4.4. Let Q ≤ Gr(Σ) be a finite subgroup and π(Q) = {r1, . . . , rt}.
Then there is a poset isomorphism

Ar(Σ)Q ∼= Ar1(Σ)× . . .× Art(Σ).

Proof. Choose an admissible Y ∈ Ar(Σ)Q as in Proposition 4.2. Given
y1, y2 ∈ Y we put y1 ∼ y2 if y2 = y1q for some q ∈ Q. Then Y/ ∼ can be
seen as an element of Ar1(Σ) × . . . × Art(Σ). Observe that we may extend
the definition of ∼ to any V ∈ Ar(Σ)Q. If A < B is a simple Q-expansion in
Ar(Σ)Q then (A/ ∼) < (B/ ∼) is also a simple expansion in the right hand
poset, moreover the expanded vertex in A maps to the expanded vertex in
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A/ ∼. It is easy to see that this implies that V 7→ V/ ∼ is in fact a poset
isomorphism using the last assertion of Proposition 4.2. �

Theorem 4.5. Let Q ≤ Gr(Σ) be a finite subgroup and π(Q) = {r1, . . . , rt}.
Then there is a central group extension

K � CGr(Σ)(Q) � Gr1(Σ)× . . .×Grt(Σ)

such that K is finite.

Proof. Let g ∈ CGr(Σ)(Q). Then for any V ∈ Ar(Σ)Q and q ∈ Q, we have

V gq = V qg = V g and therefore V g ∈ Ar(Σ)Q. Recall that g is determined
by its action on any admissible subset. Thus, in particular, it is determined
by its action on V . Now, let v1 ∼ v2 with ∼ as in the proof of Lemma 4.4.
Then v1 = v2q for some q ∈ Q thus v1g = v2qg = v2gq. This means that g
yields a map which for simplicity we denote gµ

gµ : (V/ ∼)→ (V g)/ ∼ .

Note also that the fact that g commutes with Q implies that if we split V
and V g into Q-orbits, then the elements v of V and vg of V g belong to
Q-orbits of the same type. This means that gµ yields in fact an element
gµ ∈ Gr1(Σ)× . . .×Grt(Σ). Hence there is a group homomorphism:

µ : CGr(Σ)(Q)→ Gr1(Σ)× . . .×Grt(Σ).

Next we show that µ is surjective. To see this, let (g1, . . . , gt) ∈ Gr1(Σ)×
. . .×Grt(Σ) and choose some (V̄1, . . . , V̄t) ∈ Ar1(Σ)× . . .×Art(Σ). When we
apply the element (g1, . . . , gt) this yields (V̄1g1, . . . , V̄tgt). Then the preim-
ages in Ar(Σ)Q of (V̄1, . . . , V̄t) and (V̄1g1, . . . , V̄tgt) can be denoted

V =

t⋃
j=1

V̄j × Ωj

and

V ′ =

t⋃
j=1

V̄jgj × Ωj

where Ωj is a Q-set of type j. Define g : V → V ′ via (vj , wj)g = (vjgj , wj)
for each (vj , wj) ∈ V̄j × Ωj . Clearly, this yields an element g ∈ Gr(Ω).
Moreover, for any q ∈ Q, g−1qg : V → V is the identity thus g ∈ CGr(Ω)(Q).
And the construction above also implies that µ(g) = (g1, . . . , gt).

Finally choose any V ∈ Ar(Σ)Q and note that for any h ∈ Kerµ, V h = V .
Thus K = Kerµ ≤ StabGr(Σ)(V ) which is finite. Furthermore, for every
g ∈ CGr(Σ)(Q), the commutator [h, g] acts as the identity on V and hence
every h ∈ K is central in CGr(Σ)(Q).

�

Remark 4.6. In an analogous way, one can prove that there is also a group
epimorphism

NGr(Σ)(Q) � Gr1(Σ)× . . .×Grt(Σ)

with finite kernel.
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5. Finiteness conditions in Bredon cohomology

In this section we collect all necessary background on Bredon cohomological
finiteness conditions and also prove an analogue to Bieri’s criterion for FPn .
Recall that Bredon cohomology with respect to the family of finite subgroups
provides the algebraic mirror to classifying spaces for proper actions.
Let X denote a family of subgroups of a given group G. In Bredon coho-
mology, the group G is replaced by the orbit category OXG. The category
OXG has as objects the transitive G-sets with stabilisers in X . Morphisms
in OXG are G-maps between those G-sets. Modules over the orbit category,
called OXG-modules are contravariant functors from the orbit category to
the category of abelian groups. Exactness is defined pointwise: a sequence

A→ B → C

of OXG-modules is exact at B if and only if

A(∆)→ B(∆)→ C(∆)

is exact at B(∆) for every transitive G-set ∆.
The category OXG-Mod of OXG-modules has enough projectives, which
are constructed as follows: For any G-sets ∆ and Ω, denote by [∆,Ω] the
set of G-maps from ∆ to Ω. Let Z[∆,Ω] be the free abelian group on
[∆,Ω]. One now obtains a OXG-module Z[−,Ω] by fixing Ω and letting
∆ range over the transitive G-sets with stabilisers in X . A Yoneda-type
argument, see [19], yields that these modules are free. In particular, the
modules PK(−) = Z[−, G/K] for K ∈ X are free and can be viewed as the
building blocks for free OXG-modules. Projective modules are now defined
analogously to the ordinary case. The trivial OXG-module, denoted Z(−),
is the constant functor Z from OXG to the category of abelian groups.

Bieri [1] gives criteria for a ZG-module to be of type FPn involving certain
Ext- and Tor-functors to commute with exact colimits and direct prod-
ucts respectively. In this section we prove that those criteria can also be
used for Bredon cohomology. The Bredon cohomology functors Ext∗X(M,−)
are defined as derived functors of HomX(M,−). In particular, let M(−) ∈
OXG-Mod be a contravariant OFG-module admitting a projective resolu-
tion P∗(−) �M(−). Then, for each N(−) ∈ OXG-Mod,

Ext∗X(M,N) = H∗(mor(P∗, N)).

One can also define Bredon homology functors TorX∗ (−,M). In particu-
lar, analogously to the contravariant case, one can define covariant OXG-
modules, or just comodules for short. The category of covariant OXG-
modules, denoted Mod-OXG, behaves just as expected. For example, we
have short exact sequences and enough projectives as above. In particular,
the building blocks for projective modules in Mod-OXG are the covariant
functors PK(−) = Z[G/K,−] for subgroups K ∈ X. Let M(−) ∈ OXG-Mod
be as above. Then Bredon homology functors are the derived functors of
−⊗X M, i.e., for any L(−) ∈Mod-OXG,

TorX∗ (L,M) = H∗(L⊗X P∗).
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For detail on these definitions including the categorical tensor product
and Yoneda-type isomorphism the reader is referred to [20]. In particular,
TorX∗ (−,M) can be calculated using flat resolutions of M(−).

The category of OXG-modules, as an abelian category, has well defined
colimits and limits and in particular coproducts and products. We say a
functor

T : OXG-Mod→ Ab
commutes with exact colimits, denoted here by lim−→, if, for every directed

system (Mλ)λ∈Λ of OXG-modules, the natural map

lim−→T (Mλ)→ T (lim−→Mλ)

is an isomorphism. Analogously, we say a functor

S : Mod-OXG→ Ab

commutes with exact limits, denoted here by lim
←−

, if, for every inverse system

(Nλ)λ∈Λ of OXG-comodules, the natural map

S(lim
←−

Nλ)→ lim
←−

S(Nλ)

is an isomorphism.
We say an OXG-module M(−) is finitely generated if there is a finitely
generated free module mapping onto it. In particular, there is a G-finite
G-set ∆ such that Z[−,∆] � M(−) (here we are extending the notation
Z[−,∆] to non transitive sets in the obvious way).

Lemma 5.1. Let M be an OXG-module. Then M is the direct colimit of
its finitely generated submodules.

Proof. This follows from [13, §9.19]. �

The notions of type Bredon-FP, Bredon-FPn and Bredon-FP∞ are defined
in terms of projective resolutions over OXG analogously to the classical
notions of type FP, FPn and FP∞.

Proposition 5.2. Let A be an OXG-module of type Bredon-FPn, 0 ≤ n ≤
∞. Then

(i) For every exact limit, the natural homomorphism

TorXk (lim
←−

N∗, A)→ lim
←−

TorXk (N∗, A)

is an isomorphism for all k ≤ n−1 and an epimorphism for k = n.
(ii) For every exact colimit, the natural homomorphism

lim−→ExtkX(A,M∗)→ ExtkX(A, lim−→M∗)

is an isomorphism for all k ≤ n−1 and a monomorphism for k = n.

Proof. The proof goes completely analogously to that of Bieri [1, Proposi-
tion 1.2]. It relies on the Yoneda isomorphisms, i.e that N ⊗X Z[−, G/K] ∼=
N(G/K) and HomX(Z[−, G/K],M) ∼= M(G/K), the fact that lim

←−
and

HomX(−,M) commute with finite direct sums and that lim
←−

and lim−→ are

exact and hence commute with the homology functor. �
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Bieri’s argument can be carried through completely for Bredon-Ext and
Bredon-Tor functors.

Theorem 5.3. Let A be an OXG-module. Then the following are equivalent:

(i) A is of type Bredon-FPn.
(ii) For every exact colimit, the natual homomorphism

lim−→ExtkX(A,M∗)→ ExtkX(A, lim−→M∗)

is an isomorphism for all k ≤ n−1 and a monomorphism for k = n.
(iii) For the direct limit of any directed system of OXG-modules M∗ with

lim−→M∗ = 0, one has lim−→ExtkX(A,M∗) = 0, for all k ≤ n.

Proof. The implications (i)⇒ (ii)⇒ (iii) are either obvious or follow from
Proposition 5.2. Every OXG-module is the directed colimit of finitely gen-
erated submodules, Lemma 5.1, and hence (iii)⇒ (i) is proved completely
analogously to [1, Theorem 1.3 (iiib)⇒ (i)]. �

Theorem 5.4. Let A be an OXG-module. Then the following are equivalent:

(i) A is of type Bredon-FPn .
(ii) For every exact limit, the natural homomorphism

TorXk (lim
←−

N∗, A)→ lim
←−

TorXk (N∗, A)

is an isomorphism for all k ≤ n−1 and an epimorphism for k = n.
(iii) For any K ∈ X consider any arbitrary direct product

∏
ΛK

Z[G/K,−].
Then the natural map

TorXk (
∏
K∈X

∏
ΛK

Z[G/K,−], A)→
∏
K∈X

∏
ΛK

TorXk (Z[G/K,−], A)

is an isomorphism for all k ≤ n−1 and an epimorphism for k = n.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are again either obvious or con-
sequence of Proposition 5.2.
(iii)⇒ (i) : The proof is in the same spirit as Bieri’s proof. We begin by let-
ting n = 0 and claim that A is finitely generated as an OXG-module. As an
index set we take

∏
K∈XA(G/K) and consider

∏
K∈X

∏
a∈A(G/K) Z[G/K,−].

By (iii), the natural map

µ : (
∏
K∈X

∏
A(G/K)

Z[G/K,−])⊗X A(−)→
∏

A(G/K)

A(G/K)

is an epimorphism. Let c be the element with µ(c) =
∏
K∈X

∏
a∈A(G/K) a.

Then c is of the form

c =

l∑
i=1

(
∏
K∈X

∏
A(G/K)

fa,Ki )⊗ bi,

for certain subgroups H1, . . . ,Hl ∈ X and elements bi ∈ A(G/Hi). Here,

fa,Ki ∈ Z[G/K,G/Hi]. Now we claim that there is an epimorphism

τ :
l⊕

i=1

Z[−, G/Hi] � A
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given by τ(f) := f∗(bi) ∈ A(G/K) whenever f ∈ Z[G/K,G/Hi]. Observe
that this is well defined. In particular it is functorial. To prove the claim,
take any K ∈ X and any a ∈ A(G/K). Note that

µ(c) =
l∑

i=1

∏
K∈X

∏
a∈A(G/K)

(fa,Ki )∗(bi) =
∏
K∈X

∏
a∈A(G/K)

l∑
i=1

(fa,Ki )∗(bi)

so the fact that c maps onto the diagonal means that

a =
l∑

i=1

(fa,Ki )∗(bi) = τ(
l∑

i=1

fa,Ki ).

The case n ≥ 1 is now done analogously to [1, Theorem 1.3] using a diagram
chase. �

Remark 5.5. For n ≥ 1, condition (iii) is equivalent to the following, which
in ordinary homology is often referred to as the Bieri-Eckmann criterion
for FPn : For every subgroup K ∈ X consider an arbitrary direct product∏

ΛK
Z[G/K,−]. Then the natural map∏

K∈X

∏
ΛK

Z[G/K,−]⊗X A(−)→
∏
K∈X

∏
ΛK

A(G/K)

is an isomorphism and TorXk (
∏
K∈X

∏
ΛK

Z[G/K,−], A) = 0, for all 1 ≤ k ≤
n− 1. We call this condition the global Bieri-Eckmann criterion for Bredon
homology.

We say a group satisfies the local Bieri-Eckmann criterion for Bredon
cohomology if, for any K and direct product as before, the natural map∏

ΛK

Z[G/K,−]⊗X A(−)→
∏
ΛK

A(G/K)

is an isomorphism and TorXk (
∏

ΛK
Z[G/K,−], A) = 0 for all 1 ≤ k ≤ n− 1.

6. Classifying spaces with finite isotropy

In this section we shall restrict ourselves to the family F of all the finite
subgroups of G.

To stay in line with notation previously used, we say a module is of type
FP∞ if it is of type Bredon-FP∞ with respect to F . The notions of FPn
and FP are defined analogously. For Bredon cohomology with respect to
F there is a good algebraic description for modules of type FPn. For the
original approach via classifying spaces, see [14].

Theorem 6.1. [11] Let G be a group having finitely many conjugacy classes
of finite subgroups. Then an OFG-module M(−) is of type FPn if and only
if M(G/K) is of type FPn as a Z(WK)-module for each finite subgroup K
of G.

It was also shown, [11], that a group G is of type FP0 if and only if G
has finitely many conjugacy classes of finite subgroups. Hence we have the
following corollary:
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Corollary 6.2. [11] A group G is of type FPn if and only if G has finitely
many conjugacy classes of finite subgroups and CG(K) is of type FPn for
every finite subgroup K of G.

Recall that we say a group G is of Bredon-type FPn if the trivial module
Z(−) is of type FPn as an OXG-module. We can, of course rephrase Theo-
rems 5.3 and 5.4 in terms of Bredon-cohomology and Bredon-homology re-
placing the moduleA(−) with Z(−), Ext∗X(A,−) with H∗X(G,−) and TorX∗ (−, A)

with HX
∗ (G,−).

We shall now weaken the hypothesis on the conjugacy classes of finite sub-
groups:

Definition 6.3. We say a group is of type quasi-FPn if, for each finite
subgroup K of G there are finitely many conjugacy classes of subgroups
isomorphic to K and the Weyl-groups WK := NG(K)/K are of type FPn .

Note that a group of type quasi-FPn with a bound on the orders of the finite
subgroups is of type FPn.
Let k be a positive integer. We denote by Zk(−) the OFG-module defined
by

Zk(G/H) =

{
Z if |H| ≤ k
0 otherwise,

together with the obvious morphisms.

Lemma 6.4. A group G is of type quasi-FP0 if and only if, for each k ≥ 1,
the module Zk(−) is finitely generated. Moreover, in that case, the finite
G-set ∆k with Z[−,∆k] � Zk(−) can be chosen to have stabilisers of order
bounded by k.

Proof. Suppose G is of type quasi-FP0. Take

∆k =
⊔

|H|≤k,up to G-conj.

G/H.

This is aG-finiteG-set with stabilisers of order bounded by k and Z[−,∆k] �
Zk(−). For the converse, we need to show that, for each finite subgroup K,
there are only finitely many conjugacy classes of subgroups of order bounded
by k = |K|. Let ∆k be the finite G-set with Z[−,∆k] � Zk(−) and take
any finite subgroup H of G with |H| ≤ k. Hence Zk(G/H) ∼= Z 6= 0. Since
the map Z[G/H,∆] � Zk(G/H) is onto, it follows that Z[G/H,∆] 6= 0 and
hence H has to be subconjugated to one of the finitely many stabilisers of
∆. �

Note that finitely generated OFG-modules are precisely those of type FP0.
Fix an integer k ≥ 1 and letMk(−) be anOFG-module such thatMk(G/L) =
0 whenever |L| > k. Suppose Mk(−) is finitely generated. Then there exists
a G-finite G-set ∆ with stabilisers of order ≤ k and a short exact sequence
of OFG-modules

Nk(−) � Z[−,∆] �Mk(−)

with the property that Nk(G/L) = 0 for all finite subgroups L with |L| > k.
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Proposition 6.5. A group G is of type quasi-FPn if and only if, for each
integer k ≥ 1, the OFG-module Zk(−) is of type FPn.

Proof. The ”if”-direction follows from Lemma 6.4, Theorem 6.1 and the
definition as Z|K|(G/H) is of type FPn as a WH-module for each |H| ≤ |K|.
Now suppose G is of type quasi-FPn. For each k ≥ 1 we construct a projec-
tive resolution of Zk(−) which is finitely generated in dimensions up to n;
note that we may assume n > 0. By Lemma 6.4 and the above remark we
have a short exact sequence

C0(−) � Z[−,∆0] � Zk(−)

with ∆0 a G-finite G-set and C0(G/L) = 0 for all |L| > k. We claim that
C0(−) is a finitely generated OFG-module.

We know that there are finitely many conjugacy classes of subgroups of
order bounded by k. Let H be one of those. As ∆0 is G-finite, the WH-
module Z[G/H,∆0] is of type FP∞. This is a consequence of the fact that for

any K, Z[G/H,G/K] is a sum of exactly |{x ∈ NG(H)\G/K | Hx−1 ≤ K}|
WH-modules, which are of type FP∞. As K is finite, this sum must also
be finite. So evaluating the previous short exact sequence at G/H, we see
that the WH-module C0(G/H) is of type FPn−1 and in particular, finitely
generated. Fix a finite WH-generating set XH for C0(G/H). Then the
OFG-set formed by the union of all those XH where H ∈ Stab∆0, generates
C0.

We can now proceed to construct the desired resolution by using the
remark before Proposition 6.5. �

Theorem 6.6. Let G be of type quasi-FPn, where n ≥ 1. Then G satisfies
the local Bieri-Eckmann criterion for Bredon homology.

Proof. It follows from the definition of the modules Zk(−) that

Z(−) = lim−→
k∈N

Zk(−).

In the category of OFG-modules the construction of a free module mapping
onto a given one is functorial. Hence, we can get a direct colimit of free
resolutions lim−→k∈N(F∗,k(−) � Zk(−)) = F∗(−) � Z(−), which gives us a

flat resolution of Z(−). For details the reader is referred to [20, Lemma 3.4].
Hence

HFk (G,
∏
Λ

Z[G/K,−]) = H∗(
∏
Λ

Z[G/K,−]⊗F F∗(−))

= Hk(
∏
Λ

Z[G/K,−]⊗F lim−→
k∈N

F∗,k(−))

= lim−→
k∈N

Hk(
∏
Λ

Z[G/K,−]⊗F F∗,k(−))

= lim−→
k∈N

Tork(
∏
Λ

Z[G/K,−],Zk(−)) = 0 ,

where the last line follows from Proposition 6.5 and Theorem 5.4. The first
assertion follows by a similar argument.

�



GENERALISED THOMPSON GROUPS 19

For each k ≥ 1 we consider the family Fk and the orbit category OFk
G.

For a given positive integer k the family Fk consists of all subgroups H of
G with |H| ≤ k. By using the arguments of the proofs of Lemma 6.4 and
Proposition 6.5 we can show:

Proposition 6.7. A group is of type quasi-FPn if and only if it is of type
Bredon-FPn over OFk

G for each k.

We can also rephrase Theorems and 5.3 and 5.4:

Corollary 6.8. Let G be a group. Then the following are equivalent:

(i) G is of type quasi-FPn.
(ii) For every exact colimit and any k, the natual homomorphism

lim−→Hl
Fk

(G,M∗)→ Hl
Fk

(G, lim−→M∗)

is an isomorphism for all l ≤ n−1, and a monomorphism for l = n.
(iii) For any k and any K ∈ Fk consider an arbitrary direct product∏

ΛK
Z[G/K,−]. Then the natural map

HFk
l (

∏
K∈Fk

∏
ΛK

Z[G/K,−], A)→
∏
K∈Fk

∏
ΛK

HFk
l (Z[G/K,−], A)

is an isomorphism for all l ≤ n− 1 and an epimorphism for l = n.

One may also add the statements analogous to 5.3 ii) and 5.4 ii). Note also
that for n ≥ 1 the above is equivalent to:

(iv) For any k, any K ∈ Fk and any arbitrary direct product
∏

ΛK
Z[G/K,−],

the natural map

Zk(−)⊗Fk

∏
K∈Fk

∏
ΛK

Z[G/H,−]→
∏
K∈Fk

∏
ΛK

Zk

is an isomorphism and HFk
l (G,

∏
K∈Fk

∏
ΛK

Z[G/H,−]) = 0 for all
1 ≤ l ≤ n− 1.

Definition 6.9. We say a group G is of type quasi-F∞ if for all positive
integers k, G admits a finite type model for EFk

G.

Analogously to the algebraic case, any group of type quasi-F∞, which has a
bound on the orders of the finite subgroups, is of type F∞.
Lück’s Theorem [14, Theorem 4.2] (Theorem 1.2) goes through for arbitrary
families of finite subgroups. Hence combining Theorems 1.1 and 1.2 yields:

Proposition 6.10. A group G is of type quasi-F∞ if and only if G is of
type quasi-FP∞ and G and all centralisers CG(K) of finite subgroups are
finitely presented. �

We can now prove what is largely equivalent to Proposition 6.7:

Theorem 6.11. A group G is of type quasi-F∞ if and only if it admits a
model for EG, which is the mapping telescope of finite type models for EFk

G
for each K ∈ F .



20 C. MARTÍNEZ-PÉREZ AND B. E. A. NUCINKIS

Proof. The ”if’-direction follows directly from the definition. Now suppose
we have finite type models XK for EFk

G for all K ∈ F . For each H ≤
K the universal property for classifying spaces for a family yields G-maps
νKH : XH → XK . Now the mapping telescope yields a G-CW-complex X, for
which XK is contractible for all K ∈ F and empty otherwise. �

7. Bredon cohomological finiteness properties for generalised
Thompson-Higman groups

We can now prove one of our main results.

Theorem 7.1. The following conditions are equivalent:

i) Gr(Σ) is quasi-FP∞ for any 1 ≤ r ≤ d.
ii) Gr(Σ) is quasi-FP∞ for some 1 ≤ r ≤ d.
iii) Gr(Σ) is of (ordinary) type FP∞ for any 1 ≤ r ≤ d.

Proof. Assume that ii) holds. For any 1 ≤ r2 ≤ d choose some 0 6= r1 with
r1 + 2r2 ≡ r mod d. Then there is some admissible subset Y of cardinality
r1 +2r2 and we may define an action of C2 on Y with exactly r1 fixed points.
This yields a subgroup C2

∼= Q ≤ Gr(Σ) and by 4.5, for some finite K we
have

CGr(Σ)(Q)/K ∼= Gr1(Σ)×Gr2(Σ).

So we deduce that CGr(Σ)(Q) and thus Gr2(Σ) is of type FP∞. So we have
iii).

Assume now iii) and choose any 1 ≤ r ≤ d. Then Theorem 4.3 and
Theorem 4.5 imply that Gr(Σ) is quasi-FP∞

�

The analogue to Theorem 7.1 also holds for classifying spaces for proper
actions. The following corollary is a direct consequence of Proposition 6.10,
Theorem 4.5 and Theorem 7.1.

Corollary 7.2. The following conditions are equivalent:

i) Gr(Σ) is quasi-F∞ for any 1 ≤ r ≤ d.
ii) Gr(Σ) is quasi-F∞ for some 1 ≤ r ≤ d.
iii) Gr(Σ) is of (ordinary) type F∞ for any 1 ≤ r ≤ d. �

Corollary 7.3. Let G = nV2,r be a Brin-Thompson-Higman group of arity
2. Then G is quasi-FP∞ or quasi-F∞ if and only if it is of ordinary type
FP∞ or F∞ respectively. In particular, for n = 2, 3 G is quasi-F∞.

Proof. Note that d = 1. For the last assertion, use the main result of
[10]. �

To consider finiteness conditions for the groups Tr(Σ) we need to consider
Cantor-Algebras Ur(Σ), where Σ preserves the induced ordering. Any finite
subgroup Q ≤ Tr(Σ) is cyclic. In particular, following the argument of
Proposition 4.2, we get that π(Q) = {0, ..., 0, ri, 0, ...0) with riwi ≡ r mod d.
Furthermore, there is a Y ∈ Ar(Σ)Q with |Y | = riwi such that any other
element in Ar(Σ)Q can be obtained from Y by a finite sequence of simple
Q-expansions and Q-contractions. Applying Lemma 4.4 hence proves:



GENERALISED THOMPSON GROUPS 21

Lemma 7.4. Let Ur(Σ) be a Cantor-Algebra with order preserving Σ. Let
Q ≤ Tr(Σ) be a finite subgroup. Then, for a certain 0 < l ≤ d, there is a
poset isomorphism Ar(Σ)Q ∼= Al(Σ). �

Theorem 7.5. Let Ur(Σ) be a Cantor-Algebra with order preserving Σ and
let Q ≤ Tr(Σ) be a finite subgroup. Then, for a certain 0 < l ≤ d, depending
on Q there is a central extension

K � CTr(Σ)(Q) � Tl(Σ)

with K a cyclic group of finite order.

Proof. The proof is essentially the same as the proof of Theorem 4.5. �

Remark 7.6. For Ur(Σ) = V2,1, the Higman algebra and Tr(Σ) = T, the
original Thompson-group T this reproves [17, Theorem 7.1.5].

Lemma 7.7. For every finite subgroup Q ≤ Tr(Σ) there are only finitely
many conjugacy classes in Tr(Σ) of subgroups isomorphic to Q.

Proof. Again, the proof goes through exactly as in the case for Gr(Σ), see
Theorem 4.3. In particular, if Q1

∼= Q2 and π(Q1) = π(Q2) then there are
admissible subsets V1 and V2 with the same structure as Qi-sets, then there
is a cyclic order preserving bijection ψ : V1 → V2. The rest of the proof goes
through as in 4.3. �

Theorem 7.8. Let Ur(Σ) be a Cantor-Algebra with order preserving Σ.
Then the following conditions are equivalent:

i) Tr(Σ) is quasi-F∞ for any 1 ≤ r ≤ d.
ii) Tr(Σ) is quasi-F∞ for some 1 ≤ r ≤ d.

iii) Tr(Σ) is of (ordinary) type F∞ for any 1 ≤ r ≤ d. �

Proof. This follows from Theorem 7.5 and Lemma 7.7. �

We also have the analogous result of Corollary 7.2.

Corollary 7.9. Let Ur(Σ) be a Higman algebra. Then Gn,r = Gr(Σ) and
Tn,r = Tr(Σ) are quasi-F∞.

Proof. This follows directly from [5] and Theorems 7.1 and 7.8. �

Remark 7.10. By [5], Proposition 4.1, Fn,r ∼= Fn,s, for any r, s. However,
this is false for the groups G, in fact Gn,r ∼= Gn,s implies (n−1, r) = (n−1, s)
([8] Theorem 6.4). Recently, Pardo has proven that the converse also holds
true ([21]).

Corollary 7.11. Let Ur(Σ) be a Brown-Stein algebra. Then G = Gr(Σ)
and T = Tr(Σ) are quasi-F∞.

Proof. This is a consequence of Theorems 7.1, 7.8 and [22, Theorem 2.5]
where it is proven that Fr(Σ) is finitely presented and of type FP∞ for any
r. Stein’s argument carries over to G and T , [22]. �

Corollary 7.12. Brin groups 2V and 3V are quasi-F∞.

Proof. This follows from [10] and Corollary 7.2. �
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