
COHOMOLOGICAL FINITENESS CONDITIONS FOR ELEMENTARY
AMENABLE GROUPS

P. H. KROPHOLLER, C. MARTÍNEZ-PÉREZ, AND B. E. A. NUCINKIS

ABSTRACT. It is proved that every elementary amenable group of type FP∞

admits a cocompact classifying space for proper actions.

1. INTRODUCTION

For discrete groups the term cohomological finiteness condition refers to any
property of groups which holds for all groups that admit finite Eilenberg–Mac Lane
spaces. Amongst such properties there are classical finiteness conditions such as
finite generation and finite presentability and there are also the more exotic con-
ditions such as type FP∞, type FP, and type FL. Note also that the property of
being torsion-free is a cohomological finiteness condition but not a classical finite-
ness condition while residual finiteness is a classical finiteness condition but not a
cohomological finiteness condition.

In recent years there has been increasing interest in a variant of the Eilenberg–
Mac Lane space, namely the classifying space for proper actions. In this paper we
shall determine the precise conditions under which elementary amenable groups
admit cocompact proper classifying spaces. Bredon cohomology plays a role in
studying these classifying spaces in a way that runs largely parallel to the role of
ordinary group cohomology in studying Eilenberg–Mac Lane spaces and their uni-
versal covers. In Bredon cohomology, the group G is replaced by the orbit category
OX G defined with respect to a suitable family of subgroups X . In this paper we
shall only be concerned with the family F of finite subgroups and so we simply
write OG for the orbit category instead of OF G. Modules over the orbit category
are contravariant functors to the category of abelian groups. These are called OG-
modules. The category of OG-modules has enough projectives and homological
algebra can be developed using projective resolutions giving rise to the Bredon
cohomology of groups with clear resemblance to ordinary group cohomology.

All the notions type FP∞, type FP, type FL, etc have analogues when considering
Bredon projective resolutions and we refer to these by the names type Bredon FP∞,
type Bredon FP, type Bredon FL, etc. Figure 1 shows the various interrelationships

2000 Mathematics Subject Classification. 57Q05, 20J05.
Key words and phrases. Bredon cohomology, elementary amenable group, proper classifying

space, Eilenberg–Mac Lane space, finite type.
The second named author was partially supported by MTM2004-08219-C02-01 and Gobierno de

Aragón.



2 P. H. KROPHOLLER, C. MARTÍNEZ-PÉREZ, AND B. E. A. NUCINKIS

Bredon F
α %9

EY

γ

ε

�(

Bredon FL
∗ %9

EY

γ

Bredon FP
β %9

EY

γ

Bredon FP∞

δ

��
F

α %9 FL
∗ %9 FP

β %9

β

��

FP∞

ε

��
finitely presented

α

*>torsion-free FP2

FIGURE 1. Connections between cohomological finiteness conditions

between these properties and all these implications are easily established. The no-
tion of type Bredon F is by definition equivalent to the existence of a cocompact
proper classifying space. Save for the two implications marked ∗ all the implica-
tions shown are known to be irreversible. We have included a short explanation of
this diagram in the last section of this paper.

For virtually soluble groups or, more generally, elementary amenable groups
there are no surprises as to which groups are of Bredon type F and our main theo-
rem is as follows.

Theorem 1.1. Let G be an elementary amenable group. Then the following are
equivalent.

(i) G is of type Bredon F.
(ii) G is of type Bredon FL.

(iii) G is of type Bredon FP.
(iv) G is of type Bredon FP∞.
(v) G is virtually of type F.

(vi) G is virtually of type FL.
(vii) G is virtually of type FP.

(viii) G is of type FP∞.
(ix) G is constructible.
(x) Either G is polycyclic-by-finite or G has a normal subgroup K such that

G/K is a Euclidean crystallographic group and for each subgroup L⊇ K
with L/K finite there is a finitely generated virtually nilpotent subgroup
B = B(L) of L and an element t = t(L) of L such that t−1Bt ⊂ B and
L = B∗B,t is a strictly ascending HNN-extension with base B and stable
letter t.

Here (ix) refers to the notion of constructible group as introduced by Baumslag
and Bieri [3]. The class of constructible groups is the smallest class of groups
closed under forming amalgamated free products, HNN-extensions and finite ex-
tensions and all such groups are finitely presented and of type FP∞. Baumslag and
Bieri provide a thorough discussion of the nature of soluble constructible groups,
[3]. Further analysis of this class appears in the work [11] of Bieri and Strebel and
plays a crucial role in this paper.

In view of known interconnections between the conditions (i)–(x), which we
discuss below, most of the work in this paper is concerned with establishing (viii)
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⇒ (x)⇒ (i). The first of these implications is the subject of §2 and the second is
the subject of §4. For the second implication we use Bredon cohomology which
we review in §3.

The following is an immediate consequence. Note that prior to this work this
Corollary was not proven even for the class of soluble groups of type FP.

Corollary 1.2. Every elementary amenable group of type FP is of type F.

Proof. Let G be an elementary amenable group of type FP. According to Theorem
1.1, G is of type Bredon F and so admits a cocompact model for the classifying
space for proper actions EG. Since every group of type FP, in particular G, is
torsion free it follows that EG = EG and G is of type F. �

Corollary 1.3. Let G be an elementary amenable group of type Bredon F and let
Φ be a finite group of automorphisms of G. Then the subgroup Fix(Φ) of elements
of G fixed by every element of Φ is also of type Bredon F.

Proof. The split extension, or semidirect product, G o Φ is elementary amenable
and of type FP∞ since both of these properties are inherited by finite index over
groups. Therefore, according to Theorem 1.1 (viii) ⇒ (i), G o Φ is of type F.
Normalizers of finite subgroups of groups of type F are always of type F and hence
the normalizer NGoΦ(Φ) is of type F. The subgroup Fix(Φ) has finite index in this
normalizer and so is also of type F. �

For any group G satisfying the conditions in the Theorem one has

hG = cdQ G = cdG < ∞

where hG is the Hirsh rank of G and cdG the Bredon cohomological dimension,
which is the analogous of the usual cohomological dimension but for Bredon co-
homology. This leads to the following:

Conjecture 1.4. The conditions
(xi) hG = cdQ G < ∞

(xii) hG = cdG < ∞

can be added to the Theorem.

It follows from [12] that for any group cdQ G ≤ cdG and hence (xii) implies (xi)
in the above conjecture. Furthermore (xi) implies that G/T is of type Bredon F,
where T is the largest normal locally finite subgroup of G. Hence a positive answer
to the following would also prove Conjecture 1.4.

Conjecture 1.5. Let G be an elementary amenable group such that hG = cdQ G is
finite. Then G has a bound on the orders of the finite subgroups.

Background to the Theorem. Historically, the very first steps towards under-
standing cohomological finiteness conditions for soluble groups were taken by
Gruenberg and Stammbach. Key steps concerning nilpotent groups appear in Gru-
enberg’s notes [18] and homological dimension was computed by Stammbach [32].
The question was further investigated and highlighted by Bieri [6]. Gildenhuys de-
termined exactly which soluble groups have cohomological dimension 2: the so-
lution [15] shows that all non-abelian such groups are ascending HNN-extensions
of type F and is the first evidence that questions about cohomological finiteness
conditions for soluble groups would prove to be substantial and interesting. For
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soluble-by-finite groups, the equivalence of conditions (vi), (vii) and (ix) of The-
orem 1.1 was established by Gildenhuys, Strebel and Kropholler, [16, 17, 20].
Subsequently it was shown [21, 22] by Kropholler that soluble groups of type FP∞

are virtually of type FP and work [19] of Hillman and Linnell made it possible
to extend the results to the elementary amenable case. At this stage it became
clear that every elementary amenable group of type FP∞ is nilpotent-by-abelian-by-
finite, constructible and virtually of type F. However it remained an open problem
whether or not elementary amenable groups, or even soluble groups, of type FP are
necessarily of type FL. Moreover, the interest in proper classifying spaces, which
are natural to consider for groups with torsion, raised questions as to whether all
soluble groups of type FP∞ satisfied the strongest Bredon finiteness conditions, see
for example [27] where the equivalence between (viii) and (iii) is proven. Theorem
1.1 shows that this is the case. Part (x) comes about through a careful analysis of
the Bieri–Strebel strategy for characterizing properties of nilpotent-by-abelian-by-
finite groups using invariants [11], commonly called BNS-invariants [7], which are
subsets of certain valuation spheres.

2. BIERI–STREBEL INVARIANTS FOR NILPOTENT-BY-ABELIAN-BY-FINITE
GROUPS, AND THE PROOF OF THEOREM 1.1 (viii)⇒ (x)

The goal of this section is to establish the more refined structure theory for G
stated in Theorem 1.1 (x). As explained above, results in [21, 22] and in [19] imply
that any elementary amenable group of type FP∞ is finite-by-virtually soluble. By
taking the centralizer of the finite normal subgroup, which is soluble of finite index
one easily sees that the group is in fact nilpotent-by-abelian-by-finite.

We adopt the notation used by Bieri and Strebel in [11]. For a finitely generated
abelian group Q we write S(Q) for the valuation sphere as defined in §1.1 of [11].
Let (N,H) be an admissible pair of subgroups of the group G, meaning that the
following conditions are satisfied:

• N and H are both normal subgroups of G;
• N ⊆ H;
• N is nilpotent;
• H/N is abelian; and
• G/H is finite.

Now let P denote the largest normal locally polycyclic subgroup of H. Then H/P
is a finitely generated abelian group and so the valuation sphere S(H/P) is de-
fined. Moreover, Bieri and Strebel show that if (N′,H ′) is another admissible pair
then the valuations spheres S(H/P) and S(H ′/P′) can be identified in a canonical
way. Therefore they define the valuation sphere S(G) to be S(H/P) for some fixed
choice of admissible pair (N,H) without any essential ambiguity.

Bieri and Strebel introduce the invariant σ(G), a certain closed subset of S(G).
We shall be interested in the following results about this invariant which are the
content of Theorems 5.2 and 5.4 of [11].

Proposition 2.1.
(i) G is constructible if and only if σ(G) is contained in an open hemisphere.

(ii) G is polycyclic-by-finite if and only if σ(G) is empty.

Taking Q to be the quotient group H/N we naturally have that S(G) = S(H/P)
is a subsphere of S(Q).



COHOMOLOGICAL FINITENESS CONDITIONS FOR ELEMENTARY AMENABLE GROUPS 5

We now note that the action of G by conjugation on H stabilizes σ(G) (see [27,
Lemma 3.4]). Moreover it induces an action of the finite group G/H on both H/N
and H/P. In turn this induces actions of G/H on the vector spaces hom(H/P,R)
and hom(H/N,R) and hence also on the valuation spheres S(G) = S(H/P) and
S(H/N) stabilizing σ(G).

Also, the group G acts by conjugation on N and this passes to an action of G/N
on the largest abelian quotient Nab = N/[N,N] of N. In this way we may view Nab
as a right Z[G/N]-module. For x ∈ G and b ∈ N we write bx for the conjugate
x−1bx and we write x for the image of x in G/N, that is x is the coset Nx. If a is an
element of Nab so that is a = [N,N]b for some b ∈ N then we write ax for the coset
[N,N]bx. In other words we shall notate Nab as a right G/N-module.

Q of Q and a finitely generated subgroup B0 of Nab
Associated to the data G, H, N we may consider the following subsets B0 and

B of G.
• B0 is defined to be the set of x in G for which there exists a finitely gen-

erated subgroup B0 of Nab such that B0x⊆ B0 and
⋃
i≤0

B0xi = Nab.

• B is defined to be the set of x in G for which there exists a finitely gener-
ated subgroup B of N such that Bx ⊆ B and

⋃
i≤0

Bxi
= N.

We shall now make the assumption that G is constructible. Therefore by Propo-
sition 2.1 (i) the invariant σ(G) is contained in an open hemisphere of S(G) and
the following three lemmas all rely on this. We shall also assume that σ(G) is
non-empty, i.e., that G is not polycyclic-by-finite.

Lemma 2.2. There exists x ∈ B0 whose image x in G/N belongs to the centre
ζ (G/N).

Proof. As remarked above the finite group G/H acts on Q and on the sphere S(Q)
stabilizing σ(G). Now let

C/N = CH/N(G/H)≤ ζ (G/N).

Since Q is finitely generated abelian [27, Lemma 3.5] implies that by changing
H if necessary to a finite index subgroup we may assume that H/N is torsion
free and H/N = C/N×T/N with T/N as in [27, Lemma 3.6]. So applying that
result we deduce that σ(C) is contained in an open hemisphere. If rkC/N = 0 then
σ(C) = ∅, and hence C and also G would be polycyclic-by-finite. Therefore by
[10, Theorem 4.6] there are elements q1, . . . ,qs of C/N and a finitely generated
subgroup B0 of Nab such that qi all satisfy the condition B0qi ⊆ B0 and Nab =⋃
i<0

B0(q1 . . .qn)i. It suffices then to take x with x̄ = q1 . . .qs. �

The previous result can also be proven as follows. Since σ(G) is non empty,
compact (in fact results of Bieri and Strebel show that it is finite in this case) and
stabilized by the finite group G/H it follows that its centre of mass is a fixed point
of G/H. Then one can argue in a similar way as in [10, Theorem 4.6] but using this
fixed element to deduce the existence of a a finite subset {q1, . . . ,qm} of Q with the
following properties:

• {q1, . . . ,qm} is invariant under the action of the finite group G/H, and
〈q1, . . . ,qm〉 generate a subgroup of finite index in Q.
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• There is a finitely generated subgroup B0 of Nab such that the qi all satisfy
the condition B0qi ⊆ B0.
• Nab =

⋃
i<0

B0(q1 . . .qm)i.

Then one takes x ∈ G with x̄ = q1 . . .qm.

Lemma 2.3. B0 = B.

Proof. This is an easy variation on the proof of ([11], Theorem 5.2). Take x ∈B0
and consider the derived series of N with

γ1N = N,

γi+1N = [γiN,N].
We prove by induction on ` that there is some finitely generated subgroup B`+1

of N/γ`+1N with Bx
`+1 ⊆ B`+1 and

⋃
i≤0

Bxi

`+1 = N. When ` = 1 there is nothing

to prove and so we assume that ` ≥ 2 and that there exists a finitely generated
subgroup B` with the desired properties. Let A` be a finitely generated subgroup
of N/γ`+1N with A`γ`N/γ`N = B`. Exactly as in ([11], Theorem 5.2) one gets a
finitely generated subgroup A0 of γ`N/γ`+1N having similar properties as those of
B` and it sufices to take

B`+1 = A`A0.

�

Using Lemma 2.2, choose x ∈B0 such that x belongs to ζ (G/N). By Lemma
2.3, x belongs to B and so we may choose a finitely generated subgroup B of N
such that Bx ⊆ B and N =

⋃
i<0

Bxi
. We now keep x and B fixed for the remainder of

this section. Note that if x has finite order then G is polycyclic-by-finite. We shall
therefore assume that x has infinite order.

Lemma 2.4. The subgroup K := 〈B,x〉 is normal in G and if L is any subgroup
containing K such that L/K is finite then there exist y ∈ G and a finitely generated
subgroup D of L such that

(i) B is a subgroup of finite index in D,
(ii) Dy ⊆ D,

(iii) yk = x` for some positive integers k, `,
(iv) L = 〈D,y〉.

Proof. Since N =
⋃
i<0

Bxi
we have that N ⊆ K and clearly K/N is the cyclic group

generated by x which is central in G/N. Thus K is normal in G.
Suppose now that L is a subgroup of G containing K such that L/K is finite.

Then L/N is virtually infinite cyclic and centre-by-finite. Let N1/N denote the
largest finite normal subgroup of L/N. Then L/N1 is infinite cyclic. Choose y
to be a generator of L modulo N1. Then y and x generate commensurable cyclic
subgroups of L/N and so, replacing y by y−1 if necessary, we may assume that
there are positive integers k and ` such that yk = x`. Notice that x`y−k is then an
element of N.

Let N1 be a finite subset of G consisting of coset representatives for the elements
of N1/N. Since x is central in G/N it follows that for each g ∈ N1 there exists
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ng ∈ N such that gx = gng. Choose j < 0 so that Bx j
contains all the elements ng

as g runs through N1 and so that it also contains x`y−k. The choice of j is possible
because there are only finite many ng and N is the directed union

⋃
i<0

Bxi
. Now

consider the group B1 := 〈Bx j ∪N1〉. This is contained in the virtually nilpotent
group N1 and so is itself virtually nilpotent. Also, B1 is finitely generated, Bx

1 ⊆ B1,
and we have N1 =

⋃
i<0

Bxi

1 . Define D by

D := 〈B1,B
y
1, . . . ,B

yk−1

1 〉.

Then D has the desired properties. First, Dy is generated by By
1, . . . ,B

yk−1

1 ,Byk

1 and

since x`y−k belongs to B1 we have Byk

1 = Bx`

1 ⊆ B1 so that Dy ⊆ D. Secondly 〈D,y〉
contains N, N1 and y so equals L. �

Establishing the structure described in Theorem 1.1(x). There are two cases
according to whether or not σ(G) is empty. If σ(G) = ∅ then G is polycyclic-
by-finite by Proposition 2.1 (ii) and we are done. If σ(G) 6= ∅ then Lemma 2.4
applies. In that case, let K be as in Lemma 2.4 and let K1/K be largest finite normal
subgroup of G/K. Since G/K is a quotient of G/H it is finitely generated and
abelian-by-finite. Therefore G/K1 is a Euclidean crystallographic group. Lemma
2.4 shows that any overgroup L of finite index over K or K1 also enjoys the structure
of being an ascending HNN-extension. Therefore we may replace K by K1 and
have the desired conclusion.

3. BREDON COHOMOLOGY AND FINITENESS CONDITIONS FOR PROPER
CLASSIFYING SPACES

Let G be a group. We write OG for the orbit category of G with respect to
the class of finite subgroups of G. The orbit category has the transitive G-sets with
finite stabilizers as objects and G-maps between them as morphisms. Modules over
the orbit category are contravariant functors from the orbit category to the category
of abelian groups. A sequence A→ B→C of OG-modules is exact at B if and only
if each instance is exact, that is A(∆)→ B(∆)→ C(∆) is exact at B(∆) for every
transitive G-set ∆.

For G-sets ∆, Ω we write [∆,Ω]G for the set of G-maps from ∆ to Ω and we write
Z[∆,Ω]G for the free abelian group on [∆,Ω]G. When there is no ambiguity we drop
the symbol G and simply write [∆,Ω]. Fixing Ω and allowing ∆ to range over tran-
sitive G-sets with finite stabilizers we obtain an OG-module Z[ ,Ω]. The trivial
OG-module, usually written Z, arises from this construction by taking Ω to be the
one-point G-set. For any finite group H, the OG-module Z[ ,H\G] is projective
and direct sums of modules of this form (allowing different finite subgroups) are
called free OG-modules. Every projective OG-module is a direct summand of a
free module and the finitely generated projective modules are precisely the direct
summands of finite direct sums of modules of the form Z[ ,H\G] with H finite.
The notions of type Bredon FP, Bredon FL, Bredon FP∞ are defined in terms of
projective resolutions of Z over OG in just the same way that the classical notions
of type FP, FL and FP∞ are defined.
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Moreover it is also possible to define the notion of type Bredon FPn for each
n≥ 0. The following Lemma implies the Bredon analogue of the classical fact that
a group is of type FP1 if and only if it is finitely generated.

Lemma 3.1. Let G be a group. Then G is of type Bredon FP0 if and only if G has
only finitely many conjugacy classes of finite subgroups, and G is of type Bredon
FPn if and only if, in addition, the Weyl-group K\NG(K) of each finite subgroup K
is of type FPn .

Proof. If G is of type Bredon FP0 then there is a G-finite G-set Ω with finite stabi-
lizers and an epimorphism

Z[ ,Ω]→ Z.

Now let K be an arbitrary finite subgroup of G. Evaluating this epimorphism at
Ω we obtain an epimorphism ZΩK → Z and therefore ΩK is non-empty. This
shows that K belongs to the finite set of conjugacy classes of subgroups which have
fixed points in Ω. Conversely, if there are only finitely many conjugacy classes of
finite subgroups then we can take Ω =

⊔
H

H\G where H runs through a set of

conjugacy class representatives of finite subgroups, and the obvious augmentation
map Z[ ,Ω]→ Z is an epimorphism.

The necessary and sufficient conditions for Bredon type FPn are consequences
of the following lemma. �

We say a Bredon module M is finitely generated if there is a finite OG-set Σ in
the sense of Lück [24, 9.16, 9.19] such that there is a free Bredon module F on Σ

mapping onto M. An OG-set Σ is determined by sets ΣK for each finite subgroup
K. Σ is said to be finite if for all finite subgroups K, ΣK is finite and ΣH = ∅ for all
but finitely many finite subgroups H.

Lemma 3.2. Let G be a group with finitely many conjugacy classes of finite sub-
groups. Then a Bredon module M is of type Bredon FPn if and only if for each
finite subgroup K of G, M(K\G) is a module of type FPn over the Weyl-group
WK = K\NG(K).

Proof. Let M be a Bredon module of type Bredon FPn and let P∗ � M be a pro-
jective resolution. We may assume that all Pi for i ≤ n are finitely generated free
Bredon modules. An argument analogous to [29, Section 3] shows that upon evalu-
ating the Pi(K\G) are finitely generated permutation modules over WK with finite
stabilizers. Hence, by [28, Proposition 6.3], Pi(K\G) is of type FP∞ for all i ≤ n.
A dimension shift, see [6, Proposition 1.4], implies that M(K\G) is a WK-module
of type FPn .
The converse is proved by induction on n. Let n = 0 and M be a Bredon mod-
ule such that M(K\G) is a finitely generated WK-module for all finite subgroups
K. We will construct a finite OG-set Σ generating M as a Bredon module. The
free Bredon module on Σ then is finitely generated and maps onto M. Recall
that for every G-map H\G→ K\G there is a homomorphism of abelian groups
ϕH

K : M(K\G)→M(H\G). For each finite subgroup H of G fix a finite generating
set XH of M(H\G). Now ΣH is the union of XH with all elements of M(H\G) of
the form ϕH

K (xK) whenever there is a G-map H\G→ K\G and xK ∈ XK . Since
there are only finitely many conjugacy classes of finite subgroups this results in a
finite set ΣH . Since only one representative for each finite subgroup needs to be
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taken into account, the resulting OG-set is indeed finite. There are maps ΣK → ΣH
induced by the maps ϕH

K and the free module F on Σ maps onto M.
Now suppose n > 0 and the claim is true for k < n. Since for each finite subgroup
M(K\G) is a WK-module of type FPn it is in particular finitely generated. And we
have shown that there is a short exact sequence of Bredon modules K0 � P0 � M
with P0 finitely generated free. Then, as above, P0(H\G) is a WH-module of type
FP∞. Hence by [6, Proposition 1.4] all K0(H\G) are WH-modules of type FPn−1
for all finite subgroups H of G. By induction K0 is of type Bredon FPn−1 and the
claim follows. �

Let X be a G-complex in the sense of tom Dieck ([34], Chapter II): this is a
G-CW-complex on which G acts by permuting the cells and in such a way that the
stabilizer of each cell fixes that cell point by point. We shall write ∆n(X) for the
set of n-cells of X .

Lemma 3.3. Let X be a G-complex such that the fixed sets XH are acyclic for all
finite subgroups of G. Then the augmented Bredon cell complex

· · ·→Z[ ,∆n(X)]→Z[ ,∆n−1(X)]→···→Z[ ,∆1(X)]→Z[ ,∆0(X)]→Z→ 0

is an exact sequence of OG-modules.

Proof. To check that the Bredon cell complex is exact it suffices to check that the
chain complex obtained by evaluating on each transitive G-set with finite stabilizers
is exact. A typical such G-set has the form H\G, that is the set of right cosets of
some finite subgroup H. For any G-set Ω the set [H\G,Ω] can be identified with the
H-fixed point set ΩH and so when we evaluate the Bredon complex at H\G, what
we see is the ordinary augmented cellular chain complex of the space XH . Thus
the lemma follows from the assumption that all the fixed sets XH are acyclic. �

Corollary 3.4. If T is a G-tree with edge set E and vertex set V then the augmented
Bredon cell complex

0→ Z[ ,E]→ Z[ ,V ]→ Z→ 0

is a short exact sequence of OG-modules.

Proof. If H is any finite subgroup of G then the fixed set T H is again a tree and
hence acyclic. Thus the corollary follows from Lemma 3.3. �

Lemma 3.5. Let G be a group and let B be a subgroup. If B is of type Bredon FP
then Z[ ,B\G] is an OG-module of type Bredon FP.

Proof. This follows in much the same way as the corresponding result for groups
of type FP. First, there is a functor ×BG : OB→ OG. This facilitates a restriction
functor from the category of OG-modules to the category of OB-modules and the
restriction functor has, in turn, a left adjoint called induction. We need to know
that the induction functor is exact, that it carries finitely generated projective OB-
modules to finitely generated projective OG-modules, and that IndG

B Z[−,Z]B ∼=
Z[−,B\G]G. The lemma follows from these facts by applying induction to a finite
projective resolution of the trivial OB-module Z.

Details can be found in Symonds exposition [33]. For the reader’s convenience
we include a summary of the key steps.
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The induction functor is defined in [24, 9.15] and takes the following form in
our notation.

(IndG
B M)(S\G) = M(−)⊗OB Z[S\G,−×B G]G

where M is a OB-module, S a finite subgroup of G and ⊗OB is the tensor product
defined for example in [24, 9.12]. For any finite subgroup L of B there is a Yoneda-
type formula for this tensor product:

M(−)⊗OB Z[L\B,−]B = M(L\B).

There is a bijection

[S\G,−×B G]G ∼=
⊔

x∈(B\G)S

[Sx−1\B,−]B,

and, taking free abelian groups on both sides, this gives rise to an isomorphism

Z[S\G,−×B G]G ∼=
⊕

x∈(B\G)S

Z[Sx−1\B,−]B.

This together with the Yoneda formula above yield

(IndG
B M)(S\G) =

⊕
x∈(B\G)S

M(Sx−1\B).

This formula is used in [33] to define induction. Note that as exactness means
exactness upon evaluation from the formula above one deduces that induction is
exact [33, 2.9]. And in the particular case when M = Z[ ,L\B] we get

IndG
B Z[ ,L\B]B = Z[ ,L\G]G.

This implies that IndG
B takes finitely generated free OB-modules to finitely gen-

erated free OG-modules (see [33, Lemma 2.9]), (which is not a surprise as the
restriction functor is exact) and also implies that IndG

B Z = Z[ ,B\G]G (this is [33,
Lemma 2.7]).

�

We shall work with the Grothendieck group K0(OG) of finitely generated pro-
jective OG-modules. If P is a finitely generated projective OG-module then we
write [P] for the corresponding class in the Grothendieck group. If M is an OG-
module of type Bredon FP then we write [M] for the element ∑

i≥0
(−1)i[Pi] in K0(OG)

where P∗→M is any choice of finite projective resolution of M over OG. An ap-
plication of Schanuel’s lemma shows that [M] is well-defined.

Lemma 3.6. Let G be a group of type Bredon FP. If [Z] = 0 in K0(OG) then G is
of type Bredon FL.

Proof. This is a special case of [24, Theorem 11.2a]. More generally one can work
with the image of [Z] in K̃0(OG) the quotient of the Grothedieck group modulo the
subgroup generated by classes of Bredon free modules and it is sufficient to check
vanishing there. �

Lemma 3.7. Let 0→ A→ B→C→ 0 be a short exact sequence of modules of type
Bredon FP over OG. Then the equation [C] = [B]− [A] holds in the Grothendieck
group K0(OG).
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Proof. Choose finite projective resolutions P∗→ A and Q∗→C. Then the horse-
shoe lemma can be used to construct a resolution of B in which the nth projective
is Pn⊕Qn. Now it is immediate that [B] = [A]+ [C] and the result follows. �

Corollary 3.8. Let G = B∗B,t be an ascending HNN-extension in which B is of type
Bredon FP. Then G is of type Bredon FL.

Proof. There is an action of G on a tree with one orbit of edges so that the G-
sets of vertices and edges are both isomorphic to the transitive G-set B\G. Using
Corollary 3.4 this gives rise to a short exact sequence of OG-modules

0→ Z[ ,B\G]→ Z[ ,B\G]→ Z→ 0.

Lemma 3.5 shows that the module Z[ ,B\G] which appears here is of type Bredon
FP. By Lemma 3.7 we have [Z] = 0. Hence by Lemma 3.6, G is of type Bredon
FL. �

Note that the results above also imply that if G acts on a tree of finite type with
stabilizers which are of type Bredon FL then G itself is of type Bredon FL.

4. PROOF OF THEOREM 1.1 (x)⇒ (i)

Lemma 4.1. Let G be a group of type Bredon FL. Then

(i) the Weyl group H\NG(H) associated to any finite subgroup H of G is of
type FP∞ and in particular it is finitely generated; and

(ii) G is of type Bredon F if and only if all Weyl groups of finite subgroups of
G are finitely presented.

Proof. Part (i) follows from Lemma 3.1. Lück showed [25, Theorem 5.1] that
a group admits a finitely dominated model for EG if and only if it satisfies the
conditions in (i) and all Weyl groups of finite subgroups are finitely presented.
Since G is of type Bredon FL the equivariant finiteness obstruction vanishes and
(ii) follows. �

Lemma 4.2. Let L = B∗B,t be an ascending HNN-extension over a finitely gener-
ated virtually nilpotent base B. Then L is of type Bredon F.

Proof. The finitely generated virtually nilpotent group B has type Bredon F and it
follows from Corollary 3.8 that L has type Bredon FL. By Lemma 4.1 (i), the Weyl
groups of finite subgroups of L are finitely generated. As explained in [8], L is a
coherent group meaning that all finitely generated subgroups are finitely presented.
Therefore all normalizers of finite subgroups, and the corresponding Weyl groups,
of L are finitely presented and L is of type F by Lemma 4.1 (ii). �

Proof of Theorem 1.1 (x)⇒ (i). If G is polycyclic-by-finite it is of type Bredon F,
which can be seen by an induction on the Hirsch length of the group, see [26, Ex-
ample 5.26]. Therefore we suppose that G satisfies the second part of the statement.
Any finite subgroup of G is therefore contained in a subgroup L which is a finite
index overgroup of the group K. Moreoever, L is an ascending HNN-extension
over a finitely generated virtually nilpotent group B and so is of type Bredon F by
Lemma 4.2. Also, G/K is a Euclidean crystallographic group and so is of type F.
The following result of Lück may therefore be used to complete the proof. �
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Proposition 4.3 ([25], Theorem 3.2). Let G be a group with a normal subgroup K
such that G/K is of type Bredon F. Suppose that for each subgroup L ⊇ K of G
such that L/K is finite, L is a type Bredon F. Then G is of type Bredon F.

5. APPENDIX: THE NON-REVERSIBILITY OF THE IMPLICATONS IN FIGURE 1

α The celebrated paper [5] of Bestvina and Brady includes constructions
for groups which are of type FP2 but not finitely presented, showing that
ν is not a reversible implication. Such a group can be chosen to be of
type FL and then it illustrates the non-reversibility of the implications
marked α . It remains conceivable that soluble groups of type FP2 are
always finitely presented. The first major positive result in this direction
was that of Bieri and Strebel which established the equivalence of type
FP2 and finite presentability for metabelian groups using their method of
invariants on the valuation sphere, [9].

β Thompson’s group F shown to be of type FP∞ by Brown and Geoghegan
[14] has infinite cohomological dimension and is also torsion-free. It is a
group of type Bredon FP∞ and not Bredon FP as well as being a group of
type FP∞ and not FP.

γ Any non-trivial finite group shows that the implications marked γ are not
reversible. A perhaps more significant observation is that if X denotes any
of the types F, FL, FP then “type Bredon X” neither implies nor is implied
by “virtually of type X”. In one direction, Raghunathan gave examples
[30, 31] of groups which are not residually torsion-free but which are
patently of type Bredon F. Conversely there are Leary–Nucinkis examples
described in the next item which are virtually of type F but fail all the type
Bredon X conditions.

δ Leary–Nucinkis [23] have constructed groups which are virtually of type
F and hence of type FP∞ but which are not of type Bredon FP1.

ε Many examples are known of groups which are of type FP2 or finitely
presented but not FP∞. There are also examples for each n of groups
which are of type FPn but not of type FPn+1. Some can be found in the
work [2, 4] of Abramenko and Behr. Further examples can be found in
work of Abels and Brown [1, 13] There are many other such examples in
the literature, too numerous to mention in detail here.
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