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COHOMOLOGICAL DIMENSION OF MACKEY FUNCTORS
FOR INFINITE GROUPS

CONCHITA MARTINEZ-PEREZ AND BRITA E.A. NUCINKIS

ABSTRACT

We consider the cohomology of Mackey functors for infinite groups and define the Mackey-
cohomological dimension cdgpG of a group G. We will relate this dimension to other cohomo-
logical dimensions such as the Bredon-cohomological dimension cdgG and the relative cohomo-
logical dimension §-cdG. In particular we show that for virtually torsion free groups the Mackey-
cohomological dimension is equal to both §-cdG and the virtual cohomological dimension.

1. Introduction

Mackey-functors for finite groups have been around for a long time since they give
an abstraction of the properties enjoyed by natural functors for finite groups such
as group cohomology, the Burnside ring, the representation ring, algebraic K-theory
or topological K-theory for classifying spaces to name a few. The motivation for
this work on Mackey functors for finite groups was representation theory, see [19],
[20], [21] as well as equivariant cohomology theory [5], [6]. The study of Mackey
functors for infinite groups is a fairly recent phenomenon, see for example [12] for
a less general definition. In connection with the Baum-Connes conjecture, Bredon
homology with coefficients in Mackey functors, especially with coefficients in the
representation ring, seem to be of importance [15].

Let G be a group and denote by § the family of finite subgroups of G. OzG
denotes the orbit category, which has as objects cosets G/K, where K € § and
where morphisms are G-maps G/L — G/K for G/L,G/K € 93zG. The most
common definition of a Mackey-functor is a pair of functors

(M*,M,) : D5G — Ab,

where M* is contravariant, M, is covariant and which coincide on objects. Fur-
thermore they satisfy a certain pull-back condition, which we will describe later. A
different but equivalent definition turns out to be better suited for our purposes.
We shall introduce this in Section 3. The category of Mackey functors, like any cate-
gory of functors to abelian groups, is an abelian category. Moreover, it can be shown
that a sequence of Mackey functors is exact if and only if its evaluation on each
object is exact. Also, the category of Mackey functors has enough projectives and
hence there is the notion of cohomology of Mackey-functors and of cohomological
dimension cdon;G'.

Our motivation comes from classifying spaces for proper actions and their alge-
braic mirror, Bredon cohomology. Bredon functors are slightly less complicated gad-
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gets. A Bredon functor, or Bredon module, is a contravariant functor 7' : OzG — Ab
and there is a natural way to define cohomology and the cohomological dimension
cdgG of a group G. This is the projective dimension in the Bredon category of the
constant functor Z. A classifying space for proper actions, denoted EG is a G-CW-
complex X satisfying the following: the fixed point complex XX is contractible if
K is a finite subgroup of G and empty otherwise. Constructions by Milnor [14]
and Segal [18] imply that these always exist but these constructions give us very
big models. We denote by gdzG the minimal dimension of a model for an EG.
By taking fixed points, the augmented cellular chain complex of an EG gives us a
projective resolution of Bredon-functors

C.( X >z

and hence cdzG < gdzG. Work of Dunwoody [3] for dimension one and Liick [9] for
higher dimensions implies, that unless cdgG = 2, both cdgG = gdzG. Furthermore,
there are examples where cdgG = 2 but gdgG = 3 [1]. In Section 3 we shall
compare the Bredon cohomology with the cohomology of Mackey functors and will
show (Corollary 3.9) that for every group G

Cdgm8 G S CdgG.

It is, however, not clear which connection there is between Mackey cohomological
dimension and the topology of G-spaces.

Another quantity of interest is the relative cohomological dimension §-cdG. This is
defined to be the length of the shortest relative projective resolution of the trivial
Z.G-module Z. A relative projective resolution P, —» Z is an exact sequence of ZG-
modules, which splits when restricted to each finite subgroup of G and where the P;
are direct summands of direct sums of modules induced up from finite subgroups.
In particular, permutation modules Z[G/K] with K finite are relative projective.
It can be shown that cdgG < F-cdG. For detail on relative cohomology see [16].
We shall show (Theorem 4.3) that always §-cdG < cdon; G and we therefore have
the following chain of inequalities:

cdoG < §-cdG < cdom; G < cdzG.

The main motivation for studying Mackey functors came from looking at the be-
haviour of §-cdG and cdzG for virtually torsion free groups. A group G is said
to be virtually torsion-free if it has a torsion-free subgroup H of finite index. The
virtual cohomological dimension vedG is defined to be equal to the cohomological
dimension of H over Z. By Serre’s Theorem, see [2], this is well defined. Serre’s
Theorem also implies that whenever vedG = n is finite then there is a model for
EG of dimension |G : H|n. Furthermore, vedG < §-¢dG [1]. A question of inter-
est, which has become known as Brown’s conjecture, is whether we can always
find a model for EG of dimension equal to vedG. In [7] examples were exhib-
ited, where this is not so. In particular for these examples and positive integers m
3m = vedG = F-cdG < cdzG = gdzG = 4m. As Mackey functors seem to have a
more “symmetric” structure and seem to behave more naturally under induction
from finite index subgroups, see Theorem 3.3, one would expect that things are
slightly more straightforward, which is indeed the case.
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Theorem 5.1 Let G be a virtually torsion-free group. Then
vedG = §-cdG = cdon G-

2. Induction and restriction between categories of functors.

Let € be a small category and R be a commutative ring with 1. Denote by Modge
the category with objects contravariant functors

¢ — R-mod

and morphisms natural transformations between functors. If € is a preadditive
category and to simplify notation, we also denote by Modge the category consisting
of additive functors as before. In both cases we obtain abelian categories in which
a sequence is exact if and only if its evaluation on each object in € is exact. Also
coproducts and colimits in Modge are well-defined.

From now on, we assume that € is preadditive and that given two objects A, B €
Obg, the maps in € from A to B form a free abelian group with basis B(A4, B).
Let Rgy(a,B) be the free R-module generated by B(A, B). The functor Reg(_ p) is
additive and therefore it is an object in Modge. For any M € Modge there are
Yoneda isomorphisms

HOmg(RsB(_,A), M) = M(A)
M ®c¢ Rg(a,—y) = M(A)
and as a consequence Rgp(_ ) is projective in Modpge.

Assume we have another category ® and a functor

F:D ¢
Then, associated to F' there are functors which we call restriction, induction and
coinduction given by
resg : Modge — Modgo
M- MF
indp : MOdR@ — MOdRc
T = Ry (—,rx) ®o T (%)
coindp : MOdR@ — MOdRc
T — Hom@ (R%(F*,_), T(*))

Note that ind and res are well defined, that is, take arbitrary funtors ® — R-mod
to additive functors € — R-mod (this is a consequence of the additivity of Re(_ a))-
Moreover, if ® is preadditive and F' an additive functor, then res takes additive
functors to additive functors.

For any bifunctor N : ® x € — R-mod and T € Modp, M € Modg there is a
natural adjunction

Home (T ®p N, M) =2 Homs (T, Home (N, M))
which yields
Home (indpT', M) 2 Homg (T, resp M)
Homge (M, coindpT') = Homg (resp M, T).
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LEMMA 2.1. Assume we have categories €, D, £ and functors
o JENY GRS

Then indgindr = indgr and coindy coindr = coindy g .

3. The Mackey category.

To define Mackey functors, we follow the third approach used in [20], an approach
due to H. Lindner [8]. Firstly, we define the Mackey category MzG. Its objects are
the G-sets G/K with K € §. To define morphisms from G/S to G/K consider
diagrams

G/S+ A—>G/K

of G-maps, where A is a finitely-generated G-set, up to the following equivalence
relationship: two such diagrams G/S + A - G/K and G/S + A' - G/K are
equivalent if there is a bijection A — A’ of G-maps such that the following diagram
commutes

A

N

G/S G/K

Ny

AI

These diagrams form an abelian monoid with G/S + § — G/K as a zero and
disjoint union as addition. By [20] 2.2 this monoid is free with basis the diagrams
G/S + G/L — G/K (up to equivalence as above). We will refer to these as the
basic morphisms from G/S to G/K. The set of morphisms from G/S to G/K in
the Mackey category is the abelian group generated by the basic morphisms, or
equivalently, the abelian group completion of the moniod of diagrams.

Composition is given by pull-back. To check that it is well defined, we have to
check that pull-back of G-maps A - G/K and A’ - G/K with A and A’ finitely-
generated is again finitely-generated. And as each finitely-generated G-set is a finite
disjoint union of transitive G-sets, we only have to consider the case when A = G/S,
A" = G/L for some S, L subgroups of G. Then the pull-back diagram is

Uperons/se G/LONSI ——=G/S

| g

G/L J G/K

and as K is finite we obtain a finitely generated G-set.
We define now the category of Mackey functors as

MackzG = {additive functors MzG — R-mod}.
We will write M (K) instead of M(G/K).
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As already mentioned in the introduction, the most common definition of Mackey
functors is as a pair of functors, (M*, M,) which coincide on objects and with M*
contravariant and M, covariant. This pair of functors now satisfies a pull-back
condition as follows: Let L, S, K € §. Then we have a pull-back diagram as above

which implies that the following diagram commutes:
1

D.ecroisse ML U §9'e7N) <—— M(S)
\L ‘/M*(gl)
M(L) M@ k).

The relationship between both definitions can be seen if we consider the map cor-
responding to

G/SEG/LSG/L
as the contravariant structure and the map associated to
G/SEG/Isha/r

as the covariant. In particular, if M is a Mackey functor, then for any S € §, M (S)
is a bi-Ng(S)/S-module and the equivalence of the diagrams

G/S &£G/S 5 G/S
G/s £Ga/s%S q/s

implies that for any x € Ng(9),

zm =maz L.

Given an RG-module V the fixed points and fixed quotients functors which we
denote V'~ and V_ respectively are examples of Mackey functors.

Let Q be a subset of § and M a Mackey functor. The subfunctor of M generated
by M(K), K € Q is defined as the intersection of all the subfunctors N of M
with N(K) = M(K) for all K € Q. If this subfunctor equals M, then we say that
M is generated by those values. Note that for any K € §, g € G, the morphism
associated to G/K La /K % G/K maps M(K) isomorphically onto M (K9) so in
such a set 2 it suffices to consider one representative of each G-conjugacy class of
subgroups.

Let S, K < G and

AY(S, K) = free R-module generated by the basic morphisms from S to K in 9zG

Then, by section 2, if K € §, A%(—, K) is a projective Mackey functor and by
[20] 2.2,

AG(S7K) = @ @ RL,97

9geS\G/K L<SINK
up to S? N K-conjugacy

where Ry, ; denotes the copy of R indexed by L and g. Note that there is an obvious
isomorphism between the R-modules A%(S, K) and A% (K, S). Moreover

AG(_aK) = AG(Ka _)

as Mackey functors.
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Later on we need to be able to describe induction and coinduction of Mackey
functors from a subgroup H of G. Hence, consider the inclusion functor

t:§NH—=F,

where § N H is the family of all finite subgroups of H. Denote by res%, indg and
coindg the restriction, induction and coinduction functors as in Section 2. First,
we consider restriction of projective Mackey functors.

PROPOSITION 3.1. For H<G and K € §
ress A% (—, K) = @ AH(—,K’”_1 NH).
z€H\G/K
Proof: For any S € § with S < H, we have
S\G/K= || S\H/K* nH= || ] ha
z€H\G/K *€H\G/K heS\H/K="'nH
Taking into account the previous description of A% (S, K) this implies that
ASS,K)= @ A¥(S, KT nH).
z€H\G/K

Finally, one easily checks that this is in fact an isomorphism of Mackey functors. O

Using the above formula we may also describe explicitly indg and coindg.

LEMMA 3.2. LetT be any Mackey functor over § N H, then there are R-module
isomorphisms

coind $T(S) = H T(S* NH)
z€H\G/S
ndGT(S)= @ T(s* nH)
zeH\G/S
Proof:
coind §T(S) = Homan,.,, (A% (S, ), T(*)))
HOI’HQ)[S”H( @ AH(Sa:_l ﬁH, *)7T(*)))

1

¢€H\G/S
[I Homo, (A7"(5°7 N H,#),T(x) =
z€H\G/S
H T(S*"" N H) (by the Yoneda isomorphism).
z€H\G/S
The proof for induction is analogous. O

THEOREM 3.3. For any Mackey functor T over § N H, if the inclusion of the
coproduct into the product is an isomorphism between indST(K) and coindgT (K)

for each K € §, then
indST = coind§T,
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that is, they are isomorphic as Mackey functors for §. In particular, this happens
if the index |G : H| is finite.

Proof: One easily checks that for S, K € N H
A%(K,S) —» AH(K,S)
1 g .
KELS g K+«L>SifgeH
0 otherwise.

yields a morphism of Mackey bifunctors for § N H (that is, it behaves well with
respect to morphisms in both variables). From this, using Yoneda, we deduce the
existence of a Mackey functor morphism

T(~) =Homan;,, (A" (x, =), T(x)) =
Homgy ;. (A% (%, =), T (%)) = (res$coind%T) ().
Using the adjoint isomorphism
Homgp, ., (T, res$coind§T) = Homgy (ind$ T, coind$ T)
we obtain a morphism of Mackey functors
indGT — coind§T.

After evaluating at objects this is precisely the inclusion of the coproduct into the
product. Therefore, if this inclusion is an isomorphism on objects, it must in fact
be an ismorphism of Mackey functors. O

DEFINITION 3.4. Let BS = A%(G,—) given by

BY(K) = P Ry
L<K
up to K-conjugacy

for K € §, where Ry, is a copy of R indexed by L.
Next, we define

Hgy (G, M) := Extgy (BS, M)

and cdon, G := maz{n : Hyy (G, M) #0 for M € MackzG}

5

One more consequence of 3.1 is that res§ takes projectives to projectives. More-
over, note that res; B = BH and that res% is an exact functor. Therefore there
is a Shapiro Lemma, that is

Hy, (G, coind§;N) = Hiy_ (H,N).
We give now another description of A%(—, K).
PROPOSITION 3.5.
AG(S,K) = @ PI((;(L)/ ~Ng(L)

LLS

up to S-conjugacy

with g, g1 : G/L - G/K g~ g1 if tq1 K = gK for some x € Ng(L).
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Proof: By [20], any basic morphism in the Mackey category from G/S to G/K is
equivalent to one of the form
G/S &+ G/L S GJK.

Moreover, we may represent such a diagram by a pair (L, g) with g € P(L) and
(L,g) and (L,g1) are equivalent if and only if for some z € S, L; = L* and
zg1 K = gK. Clearly in that case L and L; are S-conjugate. And conversely, if
L, = L® for some = € S then (L, g) and (L;,z~'g) are equivalent.

This means that we only have to choose pairs with one subgroup for each S-
conjugacy class of subgroups of S and pairs for different classes are not equivalent.
Finally note that (L, g) and (L, g1) are equivalent if and only if for some z € S with
L* = L (thus z € Ng(L)), zg1 K = gK. O

Note that if we see each P§ (L) as a left module for the group Ng(L)/L (using
the contravariant structure of PS), then the above formula yields

PROPOSITION 3.6. As covariant Bredon functors we have

A9, - = P  Ronwyw PED).

L<S
up to S-conjugacy

Proof: 3.5 may be rewritten as

AS(S,K)= @  Rowswyw PEL).
L<S
up to S-conjugacy
Moreover, the covariant structure on A%(S, —) is given by
G/S«+ G/L—-G/K - G/K:

which is precisely the covariant structure on the right hand side. d

Let ©zG be the orbit category. The functor O3G — MG given by the identity
on objects and taking a G-map G/S % G/K to

G/S & G/K 5 G/K
provides, by Section 2, restriction and induction maps

res : MackzgG — MorgG
M- M

ind : MorgG — MackzG
T = T(x) ©5 A%(—, %)
and an adjoint isomorphism
Homg (T, resM) = Homgy, (indT', M).

As res is clearly exact, the adjoint isomorphism implies that induction takes
projectives to projectives. But this is also a consequence of the next result.
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THEOREM 3.7. For any Bredon contra-module T and S € §
(indT)(S) = @ R ®ng(ry/L T(L).

L<s

up to S conjugacy
Moreover for K € §
indR = B and
indPg = A%(—, K)

Proof: By 3.6 we have
(indT)($) = A9(S, ") @3 T=( @  Renwyuw PEG/L) 5T =

L<S
up to S-conjugacy

@ (R ®ng(ryL PE(G/L)) @5 T =

L<S
up to S-conjugacy

ED R @ng(ry/L (P(G/L)®3T) =

LLS
up to S-conjugacy

@ R ®ng(ry/L T(G/L).

L<S
up to S-conjugacy

This implies that on the one hand indR and B¢ and on the other indPg and
A%(—, K) coincide in objects and one easily checks that they are in fact isomorphic
as Mackey functors. O

Ind is not exact in general. However, we prove in the next result that it is exact
when applied to projective resolutions.

THEOREM 3.8. Let
P, >R

be a projective resolution of Bredon contramodules. Then
indP, - BC
is a projective resolution of Mackey modules. Therefore for any Mackey functor M,

Hyy (G, M) = Hg(G, M)

Proof: For each L € 3,
P.(L) » R(L) = R

is an exact sequence of Ng(L)/L-modules. Moreover, by 3.2 of [16], this sequence is
split when restricted to the finite subgroups of Ng(L)/L. In particular this is split
when restricted to Ng(L)/L = (Ng(L) N S)/L for each S € §. This implies that

(indP)(S)= P Ry P(L) - (indR)(K) = B(K)

LLS
up to S-conjugacy

is an exact sequence. Now, by 3.7 each indP; is a projective Mackey functor and
therefore

indP, — indR = BY
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is a projective resolution. The result follows from the adjoint isomorphism. d

COROLLARY 3.9.
CdgmsG S CdgG.

4. Modules for WK.

In this section we consider some results which are proven in [20] for finite groups
to check that they remain true in the general case.
Let 7 be the functor between the Mackey categories for G associated to the
familes {1} and § given by
7:{1} > F
1—1.

As we may identify Mack;y(G) and RG-mod, the coinduction and restriction
functors associated to 7 as in Section 2 are given by

coind, : RG-mod — Mackg(G)
V = Hompg(A9(1,-),V)

and
res; : Mackz(G) — RG-mod

M — M(1).
We have

LEMMA 4.1. For Se€g
A%(1,8) = R1¢  (induced module).

Proof: By 3.6 there is an isomorphism of right RG-modules
A%(1,8) = A9(S,1) = R®s PF(1) = R®s RG = R1$ .

(From this we recover one of the adjunctions of [20]:

LEMMA 4.2. [20] There are isomorphisms of Mackey functors
coind;,V =V~
ind.V =V_
and for any Mackey functor M we have adjunctions
Hompg(M(1),V) = Homgn, (M, V™)
Hompg(V, M (1)) = Homgp, (V_, M).

Proof: Using the previous result we have
coind, V(S) = Homgg(R 1¢,V) = Homps(R,V 1$) = V*°

and it is easy to check that this yields in fact an isomorphism of Mackey functors.
The proof for ind, is analogous.
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The adjunctions are a consequence of the adjunctions of Section 2. O

THEOREM 4.3.
§-cdG < cdon, G

Proof: For any Bredon contramodule T, 3.7 implies that (indT")(1) = T'(1) and this
is in fact an isomorphism of left RG-modules. Therefore by the previous result there
is an adjunction

Hompgg(T'(1),V) = Homgy, (ind7, V™) = Homg(T, V™)

Tt suffices now to use the fact that by [16], evaluating a Bredon projective resolution
of R at 1 we obtain a relative §-projective resolution of R. O

Assume for a moment that we have K € §, K <G and N any Mackey functor
for G/K with respect to the family § = {LK/K : L € §}. From N we can get a
Mackey functor for G' defined as
N(S/K)if K < S
0 in other case.

infG, g N(S) = {

Conversely, a Mackey functor for G, say M, yields Mackey functors for G/K
defined in the following way. For each L, J € § with J < L we put RIj resp. [ 54 for
the morphisms

RY . M(L) —» M(J)
It - M(J) - M(L)
asociated to the maps G/L + G/J — G/J resp. G/J < G/J — G/L in the
Mackey category. With the same notation as in [20] we put
SM(L)= () KerR}
J<L
KZJ
TM(L) = M(L)/S ;< TmI%.
KZJ

These functors are respectively left and right adjoint to inflation. This is proven in
[19] for finite groups and the proof works equally well for arbitrary groups.

Homgy, (N, SM) = Homap, (inff; N, M)
Homgp (T M, N) 2 Homgy, (M,inf§, x N).
We turn now to the general case and fix K € §. Let WK = Ng(K)/K be the Weyl

group of K and denote
Sk M = S(resg, xyM)(K) = | KerRY
JSL
for any Mackey functor M. We may compose the following maps
coind inflG )
RWEK-mod “=" Mackzqn, ) WK =5

ind$
MackgnNG(K)Ng(K) Ng(K) MackmgG
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and we get an adjunction for any RW K-module U as in [20]
Hompw k (U, Sk M) = Homgy (indﬁG(K)infl\Vi,GéK) U_,M).
In particular if we take U = Sg M we get a morphism of Mackey functors such that

the evaluation in K is the inclusion Sk M — M(K).

PROPOSITION 4.4. If K <G and we have K < L < G, then for any Mackey
module M for L/K we have

infg/Kindf/gM = indfinff/KM.

Proof: Let S € §. Then if K < S,

inf, ind}/ ¢ M(S) = indj/ < M(S/K) = (& M(S* NL/K)=
z€L/K\G/K/S/K
P inff, M(S* N L) =indfinff, M(S).
zeL\G/S

If K £ S one easily checks that both functors annihilate on S. Hence they
coincide in objects. It is also easy to check that this yields an isomorphisms of
Mackey functors between them. O

5. Virtually torsion free groups.

Let G be a virtually torsion free group. Then there is a subgroup H < G with
|G : H| < 0o. The virtual cohomological dimension of G is

vedG = cdH.

THEOREM 5.1. Let G be a virtually torsion free group. Then
cdon; G = vedG.

Proof: Let H be a subgroup H <« G with |G : H| < oo.
If cdH = oo then obviously

cdon, G = cdH = cc.

Therefore we may assume cdH < oo and then by Serre’s Theorem, see [2], cdzG <
oo thus also cdon,G < oo. Note also that there is a bound on the orders of the
finite subgroups of G.

Put n = cdon; G and let M be a Mackey functor such that

Hp, (G, M) # 0.

For a certain set Q of subgroups of G, M is generated by M (K), K € Q. Note that
we may assume that {2 contains at most one representative of each conjugacy class of
finite subgroups. The strategy of the proofis to find a group ) and a Mackey functor

T such that H%Sn o (Q,T) # 0, and such that @ is the extension of a finite group
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by a torsion-free group. Theorem 3.8 allows us to consider Bredon-cohomology.
Applying spectral sequences as in [13] will then reduce the problem to considering
a torsion-free subgroup of H. We proceed in six steps: Step 1 to Step 4 are needed
to construct () and T, while we show in Step 5 that indeed Hgtcm o (Q,T) #0. The
last step then consists of the reduction to a suitable torsion-free subgroup of G,
which will finish the proof.

Step 1: For each K € Q let Mg be the subfunctor of M generated by M (K). The
homomorphisms Mg < M yield an epimorphism

EB Mg — M.
KeQ

We get
0 # My, (G, € Mx).
KeQ

Step 2: We shall now show that we may assume the following: For any K € 2 and

S e § with S < K, Mg(S) = 0.
We argue by induction on

max{|K| : K € Q does not satisfy this claim}.

Note that as the order of the finite subgroups of G is bounded, the previous
maximum is finite.

Now, if K € Q satisfies the claim, put S = K. Otherwise choose an S < K with
Mg (S) # 0. In both cases let Nk be the subfunctor of M generated by Mg (S).

We have a s.e.s.
D Nic — D M > D M/Nic
KeQ Keg Kef

which yields a l.e.s. in cohomology
.= Hyp (G, D Nk) - Hip (G, @ Mk) = Hyy (G, @ Mk /Nk) - ...
KeQ KeQ KeQ

Thus we have either

iy (G, D Mx/Nk) #0
KeQ
or

KeQ
In the first case, as Nk is generated by Ngk(S), the claim follows by induction.
In the second case note that Mg /Nk is generated by Mg /Ng(K). Moreover,
Mgk [Nk (S) = 0. As the number of subgroups of any K € § is bounded after a finite
number of steps this process yields a Mackey functor with non-trivial cohomology
which is a direct sum of functors generated by their value at a single subgroup and
satisfying the conditions in the claim.
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Step 3: We show that there exists a subgroup L with H < L < G such that
Hin, (G, @xeq, MKx) #0, where Q, = {K € Q| HK = L}.
To see this, note that Q is the disjoint union

o= |J (o}
H<L<G
with Qr, = {K € Q: HK = L}. As the number of possible subgroups L is finite we

get

KeQ H<LLG KeQr

so that for some L, the corresponding cohomology is not trivial and the claim
follows. From now on we keep L fixed and denote 2 = Q.

Step 4: We now fix a subgroup K € ) and take a closer look at the situation for
Mp. Our objective is to find a suitable Mackey functor mapping epimorphically
onto M. In the process we shall define the group @ and the functor T', which will
later enable us to make the necessary reductions. For simplicity we put M = Mg.
We have

SkM = (] KerR§ = M(K).
S<K
Let U = Sk M and consider the adjunction

Hompwk (U, Sk M) = Homgy, (1ndNG(K)1anG (K) (U-), M).

When we evaluate in K the map ¢ corresponding to the identity on the right
hand side we get

lndN (K)lanG( )(U—)(K) = AG(K, *) ® infy; G(K) (U_)(x) %M(K)
V |
AG(KaK)®UK:AG(K,K)®U—» U
80 ¢k is surjective. Consider now the subgroups L and ) = LNNg(K) = KNg(K)

and denote V = U |} . As the index [Ng(K) : Q| is finite we have an epimorphism
of RW K-modules

VAg/k—=>U
which induces an epimorphism of Mackey functors for W K (since the functor taking
V to V_ is right exact)
(V 18/k)- = U~

As the functor inf is also right exact we get an epimorphism of Mackey functors
for Ng(K)

inf C"(K)(V TQ/K)_ — inf] G(K)U_
(From this and inducing to G we have
ind§,, o) infufs™ (VA0 K) - = ind§, ge)infpfd U S M.

When we evaluate this composition on K we get epimorphisms and therefore, as
M is generated by M(K), it is in fact an epimorphism of Mackey functors
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Next, we describe the functor on the left hand side of the previous expression in
a different way. Using 2.1 (recall that by 4.2, V_ = ind, V) and 4.4 we get

K K . .Ng
infy; G( )(V TQ/K) infy; G( )1ndQ/K(V )= 1ndQ 1nf8/K( ).
Therefore again by 2.1
. . Ng ges
1nd§G (K)lndQ 1nf8/K( )= 1nd€1ndgmfg/K( _).

Put
T = 1nfg/K( ) and

The previous formula implies we have an epimorphism
ind¥ Fy — M.
We may describe quite explicitly the functor Fx as follows. Taking into account
that Q/K is torsion free, it follows that T is a Mackey functor in § N @ given by
0for S#K
7(s) = {0157
V for S = K.

We compute now the value
. -1
Fr(S) =indgT(S)= €@ T(S™ nQ).
zeS\L/Q
That module is trivial unless K = $2~ NQ < $% . In that case, and as $* < L,

we have K = L/H = HS®  /H = §% ' thus K® = S. But then, if that is the case
for z; # xo, we deduce z125" € LN Ng(K) = Q thus Sz;Q = Sz2Q. Therefore

0 for S not conjugate to K
Fie(8) = { _
V for S conjugate to K.
The same computation for coinduction yields
Fx(S) = indgT(S) = coind§T(S)
for any S € FN L. So by 3.3, both Mackey functors are isomorphic.

Step 5: Now, we go back to the general case and show that Hms (@,T) #0
for certain T. One more consequence of the previous formula is that we have an
isomorphism of Mackey functors

P Fx = [] Fx.

KeQ KeQ

To see this, consider the inclusion of the direct sum into the product and note that
it is an isomorphism on objects, thus it is in fact an isomorphism. Now as the index
|G : L] is finite we have by 3.3

P indf Fx =ind? @ Fx =

KeQ KeQ

= coind{ GB Fyg =
KeQ

coindf H Fg.
KeQ
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Moreover we have for any K € 2 an epimorphism indfFK —» My and this yields

an epimorphism
coind§ H Fyg = @ ind§ Fc — @ Mg.
KEQ KeQ KeQ
This implies that
0 # Hy (G, coindf [[ Fx) =Hgy,., (L, [ Fx) = [[ H,,., (L, F).
KeQ KeQ KeQ

Therefore, for some K € Q, 0 # Hyy_ (L, Fi). Now, with the same notation as
in Step 4 we have
0#Hpy ., (L, Fx) =Hg  (L,indgT) =
=Hg L(L coindjT) =
Hp, 0 (@, 7).

Step 6: We have reduced the problem to the group @) and the functor 7', which now

enables to finish the proof. As

Hipino (@:T) = Hzo(Q,T)
we may use the spectral sequence of [13] for K, @ and Q/K and we get
HP(Q/K, Hy (K, T)) = HELL(Q, T).
As K is finite,
Oforg>0

HL (K, T)=
s (K T) {T(K):Vforqzo

thus
H*(Q/K,V) = H3nq(@,T) #0
and we have (note that /K = Ng(K))
n <cdNg(K)<cdH <n
which yields the result. O

6. Open Questions

There are still a number of open problems relating to the cohomological dimension
for Mackey-functors over MzG and for some of them partial answers are known.

Since the main motivation for this work was the relationship between the coho-
mology of Mackey-functors and Bredon cohomology, the following two questions
spring to mind.

QUESTION 6.1. For which classes of groups G do we have equality
CdgﬁsG = Cd@G?

QUESTION 6.2.  Let cdon, G be finite. Can we conclude that also cdzG is finite?
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Question 6.1 is obviously true for polycyclic-by-finite groups and countable virtu-
ally torsion-free nilpotent groups as here vedG = cdgG [11],[17]. Also, Question 6.2
is trivial for elementary amenable groups of finite Hirsch length since their Bredon-
cohomological dimension is finite [4] . It is also conceivable that Question 6.1 has
a positive answer at least when they are virtually torsion-free. Here the problem
can be reduced to checking whether for soluble groups of type VFP cdzG = hdzG.
There are not many naturally occuring examples for which it is known whether
cdpG = cdzG. Dunwoody’s result [3] implies that this is so for groups acting on
trees with finite stabilizers, where cdg = 1 = c¢dgG. But even for hyperbolic groups
or mapping class groups , which both admit cocompact models for EG, see [11],
this is not known to hold. An answer to Question 6.1 would at least give a partial
solution.

Since in Theorem 5.1 we have only dealt with a very special kind of group ex-
tension, namely with torsion-free -by finite groups, it is natural to ask whether this
can be extended to more general settings.

QUESTION 6.3. Let N — G — @ be a group extension with cdon, N and cdon Q)
finite. What can be said about cdon, G ?

By Theorem 3.8 it is possible to obtain a similar spectral sequence to the one
in [13] and in particular a Hochschild-Serre spectral sequence [13, Theorem5.1].
These however require a bound on the orders of the finite subgroups of @. In
view of Theorem 5.1 one would expect that for @} a finite group one gets that
cdon; N = cdgn;G. A slightly more optimistic conjecture to make would be that in
general cdon; G < cdon; N + cdon; Q.

Onother pressing question is, off course, the question about the topological signifi-
cance of Mackey functors.

QUESTION 6.4. Let G be a group with cdon G finite. Is this equivalent to the
ezistence of a finite dimensional model for a contractible G-CW-complex with finite
stabilizers?

Additionally requiring in 6.4 that fixed points are contractible, this is a geometric
reformulation of Question 6.2. Yet here we are only asking whether our groups
belong to Kropholler’s class H; § and vice versa.
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