ON GROUPS ACTING ON CONTRACTIBLE SPACES WITH STABILIZERS OF PRIME POWER ORDER

IAN J. LEARY AND BRITA E. A. NUCINKIS

ABSTRACT. Let $\mathfrak F$ denote the class of finite groups, and let $\mathfrak P$ denote the subclass consisting of groups of prime power order. We study group actions on topological spaces in which either (1) all stabilizers lie in $\mathfrak P$ or (2) all stabilizers lie in $\mathfrak F$. We compare the classifying spaces for actions with stabilizers in $\mathfrak F$ and $\mathfrak P$, the Kropholler hierarchies built on $\mathfrak F$ and $\mathfrak P$, and group cohomology relative to $\mathfrak F$ and to $\mathfrak P$. In terms of standard notations, we show that $\mathfrak F \subset \mathbf H_1 \mathfrak P \subset \mathbf H_1 \mathfrak F$, with all inclusions proper; that $\mathbf H \mathfrak F = \mathbf H \mathfrak P$; that $\mathfrak F H^*(G;-) = \mathfrak P H^*(G;-)$; and that $\mathbf E_{\mathfrak P} G$ is finite-dimensional if and only if $\mathbf E_{\mathfrak F} G$ is finite-dimensional and every finite subgroup of G is in $\mathfrak P$.

1. Introduction

Let \mathcal{F} denote a class of groups, by which we mean a collection of groups which is closed under isomorphism and taking subgroups. A G-CW-complex X is said to be a model for $E_{\mathcal{F}}G$, the classifying space for actions of G with stabilizers in \mathcal{F} , if for each $H \leq G$, one has that the fixed point set X^H is contractible for $H \in \mathcal{F}$ and is empty for $H \notin \mathcal{F}$. The most common classes considered are the class of trivial groups and the class \mathfrak{F} consisting of all finite groups. In these cases $E_{\mathcal{F}}G$ is often denoted EG and EG respectively. Note that EG is the total space of the universal principal G-bundle, or equivalently the universal covering space of an Eilenberg-Mac Lane space for G. The space EG is called the classifying space for proper actions of G. Recently there has been much interest in finiteness conditions for the spaces $E_{\mathcal{F}}G$, especially for EG. Milnor and Segal's constructions of EG both generalize easily to construct models for any $E_{\mathcal{F}}G$, and one can show that any two models for $E_{\mathcal{F}}G$ are naturally equivariantly homotopy equivalent.

For some purposes the structure of the fixed point sets for subgroups in \mathcal{F} is irrelevant. For example, a group is in Kropholler's class $\mathbf{H}_1\mathcal{F}$ if there is any finite-dimensional contractible G-CW-complex X with

The first named author was partially supported by NSF grant DMS-0804226 and by the Heilbronn Institute.

all stabilizers in \mathcal{F} . The class $\mathbf{H}_1\mathcal{F}$ is the first stage of a hierarchy whose union is Kropholler's class $\mathbf{H}\mathcal{F}$ of hierarchically decomposable groups [10]. (These definitions were first considered for the class \mathfrak{F} of all finite groups, but work for any class \mathcal{F} .)

A priori, the class $\mathbf{H}_1\mathcal{F}$ may contain groups G that do not admit a finite-dimensional model for $\mathbf{E}_{\mathcal{F}}G$, and we shall give such examples in the case when $\mathcal{F} = \mathfrak{P}$, the class of groups of prime power order. By contrast, in the case when $\mathcal{F} = \mathfrak{F}$, no group G is known to lie in $\mathbf{H}_1\mathfrak{F}$ without also admitting a finite-dimensional model for $\mathbf{E}G$. A construction due to Serre shows that every group G in $\mathbf{H}_1\mathfrak{F}$ that is virtually torsion-free has a finite-dimensional $\mathbf{E}G$ [4], and the authors have given examples of G for which the minimal dimension of a contractible G-CW-complex is lower than the minimal dimension of a model for $\mathbf{E}G$ [14]. These examples G also have the property that they admit a contractible G-CW-complex with finitely many orbits of cells, but that they do not admit any model for $\mathbf{E}G$ with finitely many orbits of cells.

Throughout this paper, \mathfrak{F} will denote the class of finite groups, and \mathfrak{P} will denote the class of finite groups of prime power order. We compare the classifying space for G-actions with stabilizers in \mathfrak{P} with the more well-known $\underline{E}G$, and we compare the Kropholler hierarchies built on \mathfrak{F} and \mathfrak{P} . We show that a finite group G that is not of prime power order cannot admit a finite-dimensional $E_{\mathfrak{P}}G$, but that every finite group is in $\mathbf{H}_1\mathfrak{P}$. We also construct a group that is in $\mathbf{H}_1\mathfrak{F}$ but not in $\mathbf{H}_1\mathfrak{P}$, and we show that $\mathbf{H}\mathfrak{P} = \mathbf{H}\mathfrak{F}$.

In the final section we shall contrast this with cohomology relative to all finite subgroups. The relative cohomological dimension can be viewed as a generalisation of the virtual cohomological dimension, since for virtually torsion free groups these are equal, see [17]. By a result of Bouc [2, 12] it follows that groups belonging to $\mathbf{H}_1\mathfrak{F}$ have finite relative cohomological dimension, but the converse it not known. In contrast to our results concerning classifying spaces, we show that cohomology relative to subgroups in \mathfrak{F} is naturally isomorphic to cohomology relative to subgroups in \mathfrak{F} .

2. Classifying spaces for actions with stabilizers in $\mathfrak P$

Theorem 2.1. Let G be a finite group. Then G has a finite dimensional model for $E_{\mathfrak{P}}G$ if and only if G has prime power order.

Proof. If G has prime power order, then a single point may be taken as a model for $E_{\mathfrak{P}}G$. Now let G be an arbitrary finite group, let p be a prime dividing the order of G, and assume that there is a p-subgroup

P < G, such that $N_G(P)$ is not a p-group. Then the Weyl-group $WP = N_G(P)/P$ contains a subgroup H of order prime to p. Assume G has a finite dimensional model for $E_{\mathfrak{P}}G$, X say. Then the augmented cellular chain complex of the P-fixed point set, X^P , is a finite length resolution of \mathbb{Z} by free H-modules. This gives a contradiction, since \mathbb{Z} has infinite projective dimension as an H-module for any non-trivial finite group H.

Therefore we may suppose that for each subgroup $P \leq G$ which lies in \mathfrak{P} , the normalizer $N_G(P)$ is also in \mathfrak{P} . It follows from the Frobenius normal p-complement theorem [7, 5.26] that G has a normal p-complement for each prime p. Hence G is nilpotent and equal to the direct product of its Sylow subgroups. If P is a non-trivial Sylow subgroup of G, it follows that $G = N_G(P)$ is in \mathfrak{P} .

Remark 2.2. The above proof was suggested to the authors by Yoav Segev. It is considerably shorter than our original proof, which did not quote the Frobenius normal p-complement theorem.

Corollary 2.3. For a group G, the following are equivalent.

- (i) G admits a finite-dimensional $E_{\mathfrak{P}}G$;
- (ii) Every finite subgroup of G is in \mathfrak{P} and G admits a finite-dimensional EG.

Remark 2.4. We conclude the section with a remark on the type of $\mathbb{E}_{\mathfrak{P}}G$. It can proved analogously to Lück's proof for $\underline{\mathbb{E}}G$ [15] that a group G admits a finite type model for $\mathbb{E}_{\mathfrak{P}}G$ if and only if G has finitely many conjugacy classes of groups of prime power order and the Weyl-groups $N_G(P)/P$ for all subgroups P of prime power order are finitely presented and of type $\mathbb{F}P_{\infty}$. Hence any group admitting a finite type $\underline{\mathbb{E}}G$ also admits a finite type $\mathbb{E}_{\mathfrak{P}}G$. Recall that a finite extension of a group admitting a finite model for $\mathbb{E}G$ always has finitely many conjugacy classes of subgroups of prime power order [4, IX.13.2]. Hence the groups exhibited in [14, Example 7.4] are groups admitting a finite type $\mathbb{E}_{\mathfrak{P}}G$ which do not admit a finite type $\mathbb{E}G$.

This behaviour is in stark contrast to that of $E_{\mathcal{VC}}G$, the classifying space with virtually cyclic isotropy. Any group admitting a finite dimensional model for $E_{\mathcal{VC}}G$ admits a finite dimensional model for $E_{\mathcal{C}}G$, see [16] and the converse also holds for a large class of groups including all polycyclic-by-finite and all hyperbolic groups [8, 16]. Furthermore, any group admitting a finite type model for $E_{\mathcal{VC}}G$ also admits a finite type model for $E_{\mathcal{C}}G$ has to be virtually cyclic. This has been

shown for a class of groups containing all hyperbolic groups [8] and for elementary amenable groups [9].

3. The Hierarchies has and has

Proposition 3.1. Let X be a finite dimensional contractible G-CW-complex such that all stabilizers are finite. If there is a bound on the orders of the stabilizers then there exists a finite dimensional contractible G-CW-complex Y and an equivariant map $f: Y \to X$ such that $Y^H = \emptyset$ if H is not a p-group.

Proof. Using the equivariant form of the simplicial approximation theorem, we may assume that X is a simplicial G-CW-complex. To simplify notation the phrase 'G-space' shall mean 'simplicial G-CW-complex' and 'G-map' will mean 'G-equivariant simplicial map' throughout the rest of the proof. The space Y will be a G-space in this sense and the map $f:Y\to X$ will be a G-map in this sense. The G-space Y is constructed in two stages. Firstly, for each finite $K \leq G$ we build a finite-dimensional contractible K-space Y_K with the property that all simplex stabilizers in Y_K lie in \mathfrak{P} .

Suppose for now that each such K-space Y_K has been constructed. Using the G-equivariant form of the construction used in [11, Section 8] the space Y is constructed as follows. Let I be an indexing set for the G-orbits of vertices in X. For each $i \in I$, let v_i be a representative of the corresponding orbit, and let K_i be the stabilizer of v_i . Let X^0 denote the 0-skeleton of X. Define a G-space Y^0 by

$$Y^0 = \coprod_{i \in I} G \times_{K_i} Y_{K_i},$$

and define a G-map $f: Y^0 \to X^0$ by $f(g,y) = g.v_i$ for all $i \in I$, for all $g \in G$ and for all $y \in Y_{K_i}$. For each vertex w of X, let $Y(w) = f^{-1}(w) \subset Y^0$. Each Y(w) is a contractible subspace of Y^0 , and the stabilizer of w acts on Y(w).

Now for $\sigma = (w_0, \dots, w_n)$ an *n*-simplex of X, define a space $Y(\sigma)$ as the join

$$Y(\sigma) = Y(w_0) * Y(w_1) * \cdots * Y(w_n).$$

Each vertex of $Y(\sigma)$ is already a vertex of one of the $Y(w_i)$, and so the map $f: Y^0 \to X^0$ defines a unique simplicial map $f: Y(\sigma) \to \sigma$. By construction, whenever τ is a face of σ , the space $Y(\tau)$ is identified with a subspace of $Y(\sigma)$. This allows us to define Y and $f: Y \to X$ as the colimit over the simplices σ of X of the subspaces $Y(\sigma)$, and to define $f: Y \to X$, which is a G-map of G-spaces. Since each $Y(\sigma)$ is contractible, it follows that f is a homotopy equivalence, and hence Y is also contractible (see [11, Corollary 8.6]).

It remains to build the K-space Y_K for each finite group $K \leq G$. In the case when $K \in \mathfrak{P}$ we may take a single point to be Y_K , and so we may suppose that $K \notin \mathfrak{P}$. Fix such a subgroup K, and suppose that we are able to construct a finite-dimensional contractible K-space Z_K in which each stabilizer is a proper subgroup of K. We may assume by induction that for each L < K we have already constructed the L-space Y_L . The K-space Y_K can now be constructed from Z_K and the spaces Y_K using a process similar to the construction of Y from X and the spaces Y_K . It remains to construct the K-space Z_K .

An explicit construction of an K-space Z_K with the required properties is given in [13]. We therefore provide only a sketch of the argument. We may assume that K is not in \mathfrak{P} . Let S be the unit sphere in the reduced regular complex representation of K, so that S is a topological space with K-action such that the stabilizer of every point of S is a proper subgroup of K. Since K is not in \mathfrak{P} , there are K-orbits in S of coprime lengths. Using this property, it can be shown that the sphere S admits an K-equivariant self-map $g: S \to S$ of degree zero. The K-space Z_K is defined to be the infinite mapping telescope (suitably triangulated) of the map g.

Corollary 3.2. If G is in $\mathbf{H}_1\mathfrak{F}$ and there is a bound on the orders of the finite subgroups of G, then G is in $\mathbf{H}_1\mathfrak{P}$.

Remark 3.3. In Proposition 3.1, the bound on the orders of the stabilizers of X is used only to give a bound on the dimensions of the spaces Y_K . In Theorem 3.8 we shall show that $\mathbf{H}_1\mathfrak{F} \neq \mathbf{H}_1\mathfrak{P}$.

Remark 3.4. The construction in Proposition 3.1 does not preserve cocompactness, because for most finite groups K, the space Y_K used in the construction cannot be chosen to be finite. A result similar to Proposition 3.1 but preserving cocompactness can be obtained by replacing \mathfrak{P} by a larger class \mathfrak{O} of groups. Here \mathfrak{O} is defined to be the class of \mathfrak{P} -by-cyclic-by- \mathfrak{P} -groups. A theorem of Oliver [20] implies that any finite group K that is not in \mathfrak{O} admits a finite contractible K-CW-complex Z'_K in which all stabilizers are proper subgroups of K. Applying the same argument as in the proof of Proposition 3.1, one can show that given any contractible G-CW-complex X with all stabilizers in \mathfrak{F} , there is a contractible G-CW-complex Y' with all stabilizers in \mathfrak{O} and a proper equivariant map $f': Y' \to X$. (By proper, we mean that the inverse image of any compact subset of X is compact.)

For X a G-CW-complex with stabilizers in \mathfrak{F} , and p a prime, let $X_{\operatorname{sing}(p)}$ denote the subcomplex consisting of points whose stabilizer has order divisible by p. For G a group and p a prime, let $S_p(G)$ denote the poset of non-trivial finite p-subgroups of G.

Proposition 3.5. Suppose that X is a finite-dimensional contractible G-CW-complex with all stabilizers in \mathfrak{P} . For each prime p, the mod-p homology of $X_{\operatorname{sing}(p)}$ is isomorphic to the mod-p homology of the (realization of the) poset $S_p(G)$.

Proof. Fix a prime p, and let S denote the realization of the poset $S_p(G)$. For P a non-trivial p-subgroup of G, let X^P denote the points fixed by P, and let $S_{\geq P}$ denote the realization of the subposet of $S_p(G)$ consisting of all p-subgroups that contain P. By the P. A. Smith theorem [3], each X^P is mod-p acyclic. Each $S_{\geq P}$ is contractible since it is equal to a cone with apex P. Let P and Q be p-subgroups of G, and let $R = \langle P, Q \rangle$, the subgroup of G generated by P and Q. If R is a p-group then $X^P \cap X^Q = X^R$, and otherwise $X^P \cap X^Q$ is empty. Similarly, $S_{\geq P} \cap S_{\geq Q} = S_{\geq R}$ if R is a p-group and $S_{\geq P} \cap S_{\geq Q}$ is empty if R is not a p-group.

Since each X^P is mod-p acyclic, the mod-p homology $H_*(X_{\operatorname{sing}(p)})$ is isomorphic to the mod-p homology of the nerve of the covering $X_{\operatorname{sing}(p)} = \bigcup_P X^P$. Similarly, the mod-p homology $H_*(S)$ is isomorphic to the mod-p homology of the nerve of the covering $S = \bigcup_P S_{\geq P}$. By the remarks in the first paragraph, these two nerves are isomorphic.

Proposition 3.6. Let k be a finite field, and let G be the group of k-points of a reductive algebraic group over k, whose commutator subgroup has k-rank n. (For example, $G = SL_{n+1}(k)$, or $GL_{n+1}(k)$.) Any finite-dimensional contractible G-CW-complex with stabilizers in \mathfrak{P} has dimension at least n.

Proof. The hypotheses on G imply that G acts on a spherical building Δ of dimension n-1 [1, 5, Appendix on algebraic groups]. Any such building is homotopy equivalent to a wedge of (n-1)-spheres. Quillen has shown that Δ is homotopy equivalent to the realization of $S_p(G)$, where p is the characteristic of the field k [21, Proposition 2.1 and Theorem 3.1]. It follows that $S_p(G)$ is homotopy equivalent to a wedge of (n-1)-spheres, and in particular the mod-p homology group $H_{n-1}(S_p(G))$ is non-zero.

Now suppose that X is a finite-dimensional contractible G-CW-complex with stabilizers in \mathfrak{P} . Using Proposition 3.5, one sees that

the mod-p homology group $H_{n-1}(X_{\operatorname{sing}(p)})$ is non-zero. It follows that X must have dimension at least n.

Remark 3.7. In [22] it is shown that if G is a finite simple group of Lie type, of Lie rank n, then any contractible G-CW-complex of dimension strictly less than n contains a point fixed by G. (Theorem 1 of [22] contains the additional hypothesis that the G-CW-complex should be finite, but this is not used in the proof.) A similar argument to that used in [22, Theorem 2] was used in [13] to show that when $G = SL_{n+1}(\mathbb{F}_p)$, every contractible G-CW-complex without a global fixed point has dimension at least n. Note that Proposition 3.6 applies in greater generality than these results. For example, the Conner-Floyd construction [6] shows that whenever the multiplicative group of k does not have prime-power order, there is, for any $n \geq 1$, a 4-dimensional contractible $Gl_n(k)$ -CW-complex without a global fixed point.

Theorem 3.8. There are the following strict containments and equalities between classes of groups:

- (i) $\mathfrak{F} \subsetneq \mathbf{H}_1 \mathfrak{P}$;
- (ii) $\mathbf{H}_1\mathfrak{P} \subsetneq \mathbf{H}_1\mathfrak{F}$;
- (iii) $\mathbf{H}\mathfrak{F} = \mathbf{H}\mathfrak{P}$.

Proof. Corollary 3.2 shows that $\mathfrak{F} \subseteq \mathbf{H}_1\mathfrak{P}$. The free product of two cyclic groups of prime order is in $\mathbf{H}_1\mathfrak{P}$ and is not finite. The claim that $\mathbf{H}\mathfrak{F} = \mathbf{H}\mathfrak{P}$ follows from the inequalities $\mathfrak{P} \subseteq \mathfrak{F} \subseteq \mathbf{H}_1\mathfrak{P}$, and the claim $\mathbf{H}_1\mathfrak{P} \subseteq \mathbf{H}_1\mathfrak{F}$ follows from $\mathfrak{P} \subseteq \mathfrak{F}$.

It remains to exhibit a group G that is in $\mathbf{H}_1\mathfrak{F}$ but not in $\mathbf{H}_1\mathfrak{P}$. Let $G = SL_{\infty}(\mathbb{F}_p)$, the direct limit of the groups $G_n = SL_n(\mathbb{F}_p)$, where G_n is included in G_{n+1} as the 'top corner'. As a countable locally-finite group, G acts with finite stabilizers on a tree. (Explicitly, the vertex set V and edge set E are both equal as G-sets to the disjoint union of the sets of cosets $G/G_1 \cup G/G_2 \cup \cdots$, with the edge gG_i joining the vertex gG_i to the vertex gG_{i+1} .) It follows that $G \in \mathbf{H}_1\mathfrak{F}$. By Proposition 3.6, G cannot be in $\mathbf{H}_1\mathfrak{P}$.

Remark 3.9. Let G be a group in $\mathbf{H}\mathfrak{F}$ that is also of type FP_{∞} . By a result of Kropholler [10], there is a bound on the orders of finite subgroups of G, and Kropholler-Mislin show that G is in $\mathbf{H}_1\mathfrak{F}$ [11]. Corollary 3.2 shows that G is in $\mathbf{H}_1\mathfrak{P}$.

4. Cohomology relative to a class of groups

Let Δ denote a G-set, and let $\mathbb{Z}\Delta$ denote the corresponding Gmodule. For $\delta \in \Delta$, we write G_{δ} for the stabilizer of δ . A short

exact sequence $A \rightarrow B \twoheadrightarrow C$ of G-modules is said to be Δ -split if and only if it splits as a sequence of G_{δ} -modules for each $\delta \in \Delta$. Equivalently, the sequence is Δ -split if and only if the following sequence of $\mathbb{Z}G$ -modules splits: $A \otimes \mathbb{Z}\Delta \rightarrow B \otimes \mathbb{Z}\Delta \twoheadrightarrow C \otimes \mathbb{Z}\Delta$ [18].

We say a G module is Δ -projective if it is a direct summand of a G-module of the form $N \otimes \mathbb{Z}\Delta$, where N is an arbitrary G-module. Δ -projectives satisfy analogue properties to ordinary projectives. Furthermore, for each δ , and each G_{δ} -module M, the induced module $\operatorname{Ind}_{G_{\delta}}^{G}M$ is Δ -projective. Given two G-sets Δ_{1} and Δ_{2} and a G-map $\Delta_{1} \to \Delta_{2}$ then Δ_{1} -projectives are Δ_{2} -projective and Δ_{2} -split sequences are Δ_{1} -split. For more detail the reader is referred to [18].

Now suppose that \mathcal{F} is a class of groups closed under taking subgroups. We consider G-sets Δ satisfying the following condition, for all $H \leq G$:

$$(*) \Delta^H \neq \varnothing \iff H \in \mathcal{F}.$$

There are G-maps between any two G-sets satisfying condition (*), and so we may define an \mathcal{F} -projective module to be a Δ -split module for any such Δ . Similarly, an \mathcal{F} -split exact sequence of G-modules is defined to be a Δ -split sequence. If Δ satisfies (*) and M is any G-module, the module $M \otimes \mathbb{Z}\Delta$ is \mathcal{F} -projective and admits an \mathcal{F} -split surjection to M. This leads to a construction of homology relative to \mathcal{F} . An \mathcal{F} -projective resolution of a module M is an \mathcal{F} -split exact sequence

$$\cdots \to P_{n+1} \to P_n \to \cdots \to P_0 \to M \to 0,$$

where all P_i are \mathcal{F} -projective. Group cohomology relative to \mathcal{F} , denoted $\mathcal{F}H^*(G;N)$ can now be defined as the cohomology of the cochain complex $\text{Hom}_G(P_*,N)$, where P_* is an \mathcal{F} -projective resolution of \mathbb{Z} .

We say that a module M is of type $\mathcal{F}FP_n$ if M admits an \mathcal{F} -projective resolution in which P_i is finitely generated for $0 \le i \le n$. It has been shown that modules of type $\mathcal{F}FP_n$ are of type FP_n [18]. We will say that a group G is of type $\mathcal{F}FP_n$ if the trivial G-module \mathbb{Z} is of type $\mathcal{F}FP_n$.

We now specialize to the cases when $\mathcal{F} = \mathfrak{F}$ and $\mathcal{F} = \mathfrak{P}$.

Theorem 4.1. The following properties hold.

- (i) A short exact sequence of G-modules is \mathfrak{F} -split if and only if it is \mathfrak{P} -split.
- (ii) A G module is \mathfrak{F} -projective if and only if it is \mathfrak{P} -projective.
- (iii) $\mathfrak{F}H^*(G,-)\cong \mathfrak{P}H^*(G,-)$

Proof: (i) It is obvious that any \mathfrak{F} -split sequence is \mathfrak{P} -split, and the converse follows from a standard averaging argument. Let H be an

arbitrary finite subgroup of G. Then $|H| = \prod_{i=1,\dots,n} p_i^{a_i}$ where p_i are distinct primes and $0 < a_i \in \mathbb{Z}$. For each i, let n_i be the index $n_i = [H:P_i]$. Now consider a \mathfrak{P} -split surjection $A \xrightarrow{\pi} B$. Let σ_i be a P_i -splitting of π , and define a map s_i by summing σ_i over the cosets of P_i :

$$s_i(b) = \sum_{t \in H/P_i} t\sigma_i(t^{-1}b).$$

For each P_i we obtain a map $s_i: B \to A$, such that $\pi \circ s_i = n_i \times id_B$. There exist $m_i \in \mathbb{Z}$ so that $\sum_i m_i n_i = 1$, and the map $s = \sum_i m_i s_i$ is the required H-splitting.

(ii) It is obvious that a \mathfrak{P} -projective module is \mathfrak{F} -projective. Now let P be \mathfrak{F} -projective. We may take a \mathfrak{P} -split surjection $M \twoheadrightarrow P$ with M a \mathfrak{P} -projective. By (i) this surjection is \mathfrak{F} -split, and hence split. Thus P is a direct summand of a \mathfrak{P} -projective and so is \mathfrak{P} -projective.

(iii) now follows directly from (i) and (ii).
$$\Box$$

Proposition 4.2. A group G is of type $\mathfrak{F}P_0$ if and only if G has only finitely many conjugacy classes of subgroups of prime power order.

Proof: Suppose that G has only finitely many conjugacy classes of subgroups in \mathfrak{P} . Let I be a set of representatives for the conjugacy classes of \mathfrak{P} -subgroups and set

$$\Delta_0 = \bigsqcup_{P \in I} G/P.$$

This G-set satisfies condition (*) for \mathfrak{P} and therefore the surjection $\mathbb{Z}\Delta_0 \to \mathbb{Z}$ is \mathfrak{F} -split and also $\mathbb{Z}\Delta_0$ is finitely generated.

To prove the converse we consider an arbitrary \mathfrak{F} -split surjection $P_0 \twoheadrightarrow \mathbb{Z}$ with P_0 a finitely generated \mathfrak{F} -projective. As in [18, 6.1] we can show that P_0 is a direct summand of a module $\bigoplus_{\delta \in \Delta_f} \operatorname{Ind}_{G_\delta}^G P_\delta$, where Δ_f is a finite G-set, the G_δ are finite groups and P_δ are finitely generated G_δ -modules. Therefore we might assume from now on that P_0 is of the above form. Since there is a G-map $\Delta_f \to \Delta$, where Δ satisfies condition (*) the \mathfrak{F} -split surjection $P_0 \stackrel{\varepsilon}{\to} \mathbb{Z}$ is also Δ_f -split [18]. Consider now the following commutative diagram:

$$P_0 \xrightarrow{\varepsilon} \mathbb{Z}$$

$$\alpha \left(\begin{array}{c} \beta \\ \mathbb{Z} \Delta_f \xrightarrow{\varepsilon_f} \mathbb{Z} \end{array} \right)$$

That we can find such an α follows from the fact that ε is Δ_f -split, and β exists since P_0 is Δ_f -projective being a direct sum of induced modules, induced from G_{δ} , $(\delta \in \Delta_f)$ to G.

As a next step we'll show that ε_f is \mathfrak{F} -split. Take an arbitrary finite subgroup H of G and show that ε_f splits when restricted to H. Since ε is split by s, say, when restricted to H we can define the required splitting by $\beta \circ s$.

Now let P be an arbitrary p-subgroup of G. Since the module $\mathbb{Z}[G/P]$ is \mathfrak{F} -projective, there exists a G-map φ , such that the following diagram commutes:

$$\mathbb{Z}\Delta_f \xrightarrow{\varepsilon_f} \mathbb{Z}$$

$$\varphi \downarrow \qquad \qquad \parallel$$

$$\mathbb{Z}[G/P] \longrightarrow \mathbb{Z}$$

The image $\varphi(P)$ of the identity coset P is a point of $\mathbb{Z}\Delta$ fixed by the action of P. If H is any group and $\mathbb{Z}\Omega$ is any permutation module, then the H-fixed points are generated by the orbit sums $H.\omega$. Hence P must stabilize some point of Δ_f , since otherwise we would have that P divides $\varepsilon_f \varphi(P) = \varepsilon \alpha(P) = 1$, a contradiction. It follows that P is a subgroup of G_δ for some $\delta \in \Delta_f$.

Note that being of type $\mathfrak{F}P_0$ does not imply that there are finitely many conjugacy classes of finite subgroups. In fact, the authors have examples with infinitely many conjugacy classes of finite subgroups, see [14]. Nevertheless this gives rise to the following conjecture:

Conjecture 4.3. A group G is of type $\mathfrak{F}P_{\infty}$ if and only if G is of type FP_{∞} and has finitely many conjugacy classes of p-subgroups.

It is shown in [18] that any G of type $\mathfrak{F}P_{\infty}$ is of type FP_{∞} , which together with Proposition 4.2 proves one implication in the above conjecture.

REFERENCES

- [1] P. Abramenko and K. S. Brown, *Buildings: Theory and Applications*, Graduate Texts in Mathematics **248**, Springer Verlag (2008).
- [2] S. Bouc, Le complexe de chaînes d'un G-complexe simplicial acyclique, J. Algebra, 220, (1999), 415–436.
- [3] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press (1972).
- [4] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer Verlag (1982).
- [5] K. S. Brown, Buildings, Springer Verlag (1989).

- [6] P.E. Conner and S.E. Floyd, Differentiable periodic maps, Bull. Am. Math. Soc. 68, (1962), 76–86.
- [7] I.M. Isaacs, Finite group theory, Graduate Studies in Mathematics 92, Providence, RI: American Mathematical Society (AMS). (2008).
- [8] D. Juan-Pineda and I. J. Leary, On classifying spaces for the family of virtually cyclic subgroups, *Recent developments in algebraic topology* Contemporary Mathematics 407, 135-145 (2006).
- [9] D. H. Kochloukova, C. Martínez-Pérez and B.E.A. Nucinkis, Cohomological finiteness conditions in Bredon cohomology, preprint 2008.
- [10] P. H. Kropholler, On groups of type FP_{∞} , J. Pure Appl. Algebra **90** (1993), 55–67.
- [11] P. H. Kropholler and G. Mislin, Groups acting on finite dimensional spaces with finite stabilizers, *Comment. Math. Helv.* **73** (1998), 122–136.
- [12] P. H. Kropholler and C. T. C. Wall A theorem of Bouc concerning finite group actions on finite dimensional acyclic spaces, preprint.
- [13] I. J. Leary, On finite subgroups of groups of type VF, Geom. Topol. 9 (2005), 1953–1976.
- [14] I. J. Leary and B. E. A. Nucinkis, Some groups of type VF, *Invent. Math.* 151 (2003), 135–165.
- [15] W. Lück, The type of the classifying space for a family of subgroups, *J. Pure Appl. Algebra* **149** (2000), 177-203.
- [16] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic subgroups, arXiv:math.AT/0702646v1, 2007.
- [17] C. Martinez-Pérez and B. E. A.Nucinkis, Cohomological Dimension of Mackey Functors for Infinite Groups, J. London Math. Soc. (2) 74 (2006), no. 2, 379–396.
- [18] B. E. A. Nucinkis, Cohomology relative to a G-set and finiteness conditions, Top. Appl. 92, (1999), 153–171.
- [19] B. E. A. Nucinkis, Is there an easy algebraic characterisation of universal proper G-spaces?, Manuscripta Math. 102, (2000), 335–345.
- [20] R. Oliver, Fixed-point sets of group actions on finite acyclic complexes, *Comment. Math. Helvetici* **50** (1975), 155–177.
- [21] D. Quillen, Homotopy properties of the poset of non-trivial *p*-subgroups of a group, *Advances in Math.* **28**, (1978), 101–128.
- [22] Y. Segev, On the action of finite simple groups of Lie type and characteristic p on finite \mathbb{Z}_p -acyclic simplicial complexes, Topology 32 (1993) 665–675.
- [23] J. Tits, On buildings and their applications, *Proc. Int. Cong. Mathematicians*, Vancouver, 1974.

Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus Ohio 43210

Heilbronn Institute, University of Bristol, Royal Fort Annexe, Bristol BS8 $1\mathrm{TW}$

E-mail address: leary@math.ohio-state.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON SO17 1BJ, UK

E-mail address: B.E.A.Nucinkis@soton.ac.uk