Representations of locally compact p-adic groups and Number Theory

Shaun Stevens
University of East Anglia, Norwich

Workshop on Representations and Asymptotic Group Theory
Southampton
7 April 2009
Notations

- F a locally compact non-archimedean local field, with ring of integers \mathfrak{o}_F, maximal ideal \mathfrak{p}_F, uniformizer ϖ_F, residue field $k_F = \mathfrak{o}_F / \mathfrak{p}_F$ of characteristic p.

$$\mathbb{Q}_p \supset \mathbb{Z}_p \supset p\mathbb{Z}_p.$$

- $G = G(F)$ the points of a connected reductive group.

$$G = GL_n(F), \quad G = Sp_{2n}(F).$$

- For $H \subseteq G$ a closed subgroup, $\mathcal{R}(H)$ the category of smooth complex representations of H.

A complex representation (π, \mathcal{V}) of H is smooth if

$$\text{Stab}_H(\nu)$$

is open, for all $\nu \in \mathcal{V}$.

- $\text{Irr}(H)$ the set of equivalence classes of irreducible representations in $\mathcal{R}(H)$.

Let K be a compact open subgroup of G. Any $\rho \in \text{Irr}(K)$ factors through a finite quotient and is finite-dimensional. Any $\rho \in \mathfrak{R}(K)$ is semisimple.

For G the situation is somewhat different. Any $\pi \in \text{Irr}(G)$ which is finite-dimensional is in fact 1-dimensional. In general, representations in $\mathfrak{R}(G)$ are not semisimple. Schur’s Lemma does hold.
Restriction to compact open subgroups

Theorem

Let \(\pi \in \text{Irr}(G) \) and let \(K \) be a compact open subgroup of \(G \). The restriction \(\pi|_K \) decomposes as a direct sum of smooth irreducible representations of \(K \), each appearing with finite multiplicity.

Remarks

- Not all representations of compact open subgroups are “interesting” – eg. the trivial representation of \(\text{GL}_n(\mathcal{O}_F) \).
- We want those which are *typical* of representations of \(G \).
- Maximal compact subgroups are not in general all conjugate to \(G(\mathcal{O}_F) \).
- The *typical* representations “naturally” live on more complicated compact subgroups: *parahoric* subgroups.
Parahoric subgroups

Let K be a maximal compact (open) subgroup of G, with pro-p radical K_{0+}:

$$1 \to K_{0+} \to K \to M(k_F) \to 1,$$

for M a reductive group.

A parahoric subgroup is the inverse image in K of a parabolic subgroup of the connected component of M.

Parahoric subgroups J come with left-continuous decreasing filtrations by normal subgroups J_r, for $r \geq 0$, with

$$J_0 = J, \quad [J_r, J_s] \subset J_{r+s}, \text{ for } r, s \geq 0,$$

and we put $J_{r+} = \bigcup_{s > r} J_s$.

The basic example is the Iwahori subgroup.
Given $\pi \in \text{Irr}(G)$, we can consider

$$\left\{ r \in \mathbb{R} : \text{there is a parahoric subgroup } J \text{ with } \pi^{Jr+} \neq 0 \right\}.$$

It is non-empty (by smoothness) and attains its minimum, which is a rational number. This is the normalized level $n(\pi)$.

For $G = \text{GL}_n(F)$, the set of possible normalized levels is

$$\left\{ \frac{a}{b} : a, b \in \mathbb{Z}_{\geq 0}, 1 \leq b \leq n \right\}.$$

For $G = \text{Sp}_{2n}(F)$, the set of possible normalized levels is

$$\left\{ \frac{a}{2b} : a, b \in \mathbb{Z}_{\geq 0}, 1 \leq b \leq n \right\}.$$
If $r = n(\pi) > 0$ and $\pi^{J_{r^+}} \neq 0$ then $\pi|_{J_r}$ contains a non-trivial (1-dimensional) character χ of J_r/J_{r^+},

and these characters are parametrized by cosets in the (dual of the) Lie algebra of G.

The minimality of r implies:

- this coset is *non-nilpotent* (mod p).

In fact, we can assume it is *semisimple* (mod p).

This character χ is often called an *unrefined minimal K-type*.
Let K be a compact open subgroup of G and $\rho \in \text{Irr}(K)$.

- $\mathcal{A}^\rho(G)$ the full subcategory whose objects are representations generated by their ρ-isotypic component.
- $\mathcal{A}_\rho(G)$ the full subcategory whose objects are representations with zero ρ-isotypic component.

Definition

(K, ρ) is a type if $\mathcal{A}^\rho(G)$ closed under subquotients.

If (K, ρ) is a type then $\mathcal{A}(G) = \mathcal{A}^\rho(G) \oplus \mathcal{A}_\rho(G)$.

The archetype is the pair

$$K = \text{Iwahori subgroup}, \rho = 1.$$

But $(GL_n(o_F), 1)$ is not a type.
Parabolic induction

If M is a Levi subgroup of G and $\tau \in \text{Irr}(M)$, we form the parabolically induced representation

$$\text{Ind}_{M,P}^G \tau,$$

a smooth representation of finite length.

An irreducible representation π of G is **cuspidal** if it is *not* a subrepresentation of any parabolically induced representation $\text{Ind}_{M,P}^G \tau$, for M a proper Levi subgroup.

- Given $\pi \in \text{Irr}(G)$, there are a Levi subgroup M and a cuspidal representation τ of M such that π is a subrepresentation of $\text{Ind}_{M,P}^G \tau$. Moreover, (M, τ) is unique up to conjugacy. It is called the *cuspidal support* of π.
Cuspidal types

For \(\pi \in \text{Irr}(G) \) cuspidal, a \(\pi \)-type is a type \((K, \rho)\) such that the irreducible representations in \(\mathcal{R}^\rho(G) \) are precisely

\[
\{ \pi \otimes \chi, \text{ for some unramified character } \chi \text{ of } G \}.
\]

All known cuspidal representations can be constructed as

\[
\pi \cong \text{Ind}^G_K \tilde{\rho},
\]

for \(\tilde{K} \) a compact-mod-center open subgroup of \(G \) and \(\tilde{\rho} \in \text{Irr}(\tilde{K}) \), such that, for \(K \) the unique maximal compact subgroup of \(\tilde{K} \), the restriction \(\rho = \tilde{\rho}|_K \) is irreducible.

In this situation, \((K, \rho)\) is a \(\pi \)-type.
Theorem

This is all cuspidal representations in the following cases:

- $GL_n(F)$;
- $SL_n(F)$;
- Level zero representations for arbitrary G;
- G arbitrary but several conditions on F;
- $GL_m(D)$, D a division algebra over F;
- G a classical group, $p \neq 2$.

[Howe, Carayol, Bushnell–Kutzko, Morris, Moy–Prasad, Yu, Kim, Sécherre, S.]
Cuspidal types

When $p \nmid n$, Howe parametrized the irreducible cuspidals of $GL_n(F)$ by isomorphism classes of admissible pairs (E, ξ), where:

- E/F is a field extension of degree n;
- ξ is a character of E^\times such that:
 - ξ does not factor through $N_{E/L}$, for any $E \supseteq L \supseteq F$;
 - if $\xi|_{U_E^1}$ factors through $N_{E/L}$, for some $E \supseteq L \supseteq F$, then E/L is unramified.

From such a pair one constructs π_ξ, a cuspidal representation of $GL_n(F)$, giving a non-canonical bijection

$$
\left\{ \text{isomorphism classes of admissible pairs} \right\} \leftrightarrow \left\{ \text{equivalence classes of irreducible cuspidal representations of } GL_n(F) \right\}
$$
Local Class Field Theory

We have short exact sequences

\[
1 \rightarrow \mathcal{I}_F \rightarrow \mathcal{G}_F \rightarrow \hat{\mathbb{Z}} \rightarrow 1
\]

\[
1 \rightarrow \mathcal{I}_F \rightarrow \mathcal{W}_F \rightarrow \mathbb{Z} \rightarrow 1
\]

\(\mathcal{W}_F\) is the Weil group of \(F\).

There is a canonical bijection

\[
\mathcal{W}_F^{ab} \leftrightarrow F^\times.
\]
Put $\mathcal{W}_D = \mathcal{W}_F \times SL_2(\mathbb{C})$, the Weil-Deligne group of F.

Local Langlands Correspondence

There is a canonical bijection

$$\left\{ \text{continuous complex } \right. \atop \left. \text{n-dimensional representations of } \mathcal{W}_D \right\} \leftrightarrow \left\{ \text{irreducible smooth complex representations } \right. \atop \left. \text{of } GL_n(F) \right\}$$

[Laumon–Rapoport–Stuhler, Harris–Taylor, Henniart]

This can be reduced to a bijection

$$\left\{ \text{irreducible n-dimensional } \right. \atop \left. \text{representations of } \mathcal{W}_F \right\} \leftrightarrow \left\{ \text{irreducible cuspidal representations of } GL_n(F) \right\}$$

Shaun Stevens
Representations of p-adic groups
When \(p \nmid n \), one can parametrize the irreducible \(n \)-dimensional representations of \(\mathcal{W}_F \) in terms of *admissible pairs* \((E, \xi)\):

\[
\sigma_\xi = \text{Ind}_{\mathcal{W}_E}^{\mathcal{W}_F} \xi.
\]

[Bushnell–Henniart] The Local Langlands Correspondence is given by

\[
\sigma_\xi \leftrightarrow \pi_{\xi \mu},
\]

for \(\mu = \mu_\xi \) an explicit tamely ramified character of \(E^\times \) (which is non-trivial in general).
Local Langlands Conjectures

Let $G = G(F)$ be a connected reductive group, \hat{G} the complex dual group and

$$L G = \hat{G} \rtimes \mathcal{W}_F,$$

the Langlands dual group.

The Langlands Conjectures predict a finite-one correspondence

$$\begin{align*}
\text{continuous complex representations } \mathcal{W}_D \to L G & \leftrightarrow \\
\text{irreducible smooth complex representations of } G
\end{align*}$$

The fibres of the map are called L-packets.

Langlands Functoriality predicts that if there is a continuous map $L G \to L H$ then there is a corresponding map from the set of L-packets for G to the set of L-packets for H.
For generic cuspidal representations π of $G = \text{Sp}_{2n}(F)$, the corresponding representation of \mathcal{W}_F should take the form

$$\sigma_1 \oplus \cdots \oplus \sigma_r \oplus \omega,$$

for σ_i inequivalent irreducible representations $\mathcal{W}_F \to \text{SO}_{2n_i}(\mathbb{C})$, $\sum_i n_i = n$, and ω a character.

If π_i is the representation of $\text{GL}_{2n_i}(F)$ corresponding to σ_i, then the pairs $(\text{GL}_{2n_i}(F) \times G, \pi_i \otimes \pi)$ in $\text{Sp}_{2(n+n_i)}(F)$ should be exactly those which give “interesting” reducibilities in parabolic induction.
Representations of locally compact p-adic groups and Number Theory

Shaun Stevens
University of East Anglia, Norwich

Workshop on Representations and Asymptotic Group Theory
Southampton
7 April 2009