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§1 Currying and the product-hom adjunction
The Haskell category Hask has as objects all types, such as
Integer, String, Integer -> Bool, and morphisms all . . .

I 6 :: Integer

I "Is this too easy?" :: String

I adams x = if x == 42 then True else False

Thus adams :: Integer -> Bool and adams 42  True.

Question. What about multiple arguments? Unidiomatic:

I fPair (b, x) = if b then floor x else floor (x+1)

of type (Bool, Double) -> Integer. Idiomatic:

I f b x = if b then floor x else floor (x+1)

of type Bool -> Double -> Integer. Thus

I f True :: Double -> Integer

is a single variable function and f is a function taking as input a
boolean and returning a function of type Double -> Integer.

Conclusion. You can’t program in Haskell without meeting the
product-hom adjunction in almost every line.
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Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

In Set:

HomSet

(
×Y , ) ∼= HomSet(,HomSet(Y , )

)
Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

Haskell Brooks Curry 1900–1982

In Set:

HomSet

(
×Y , ) ∼= HomSet(,HomSet(Y , )

)
Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

In Set:

HomSet

(
X × Y ,Z ) ∼= HomSet(X ,HomSet(Y ,Z )

)

Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

In Set:

HomSet

(
−× Y ,−) ∼= HomSet(−,HomSet(Y ,−)

)

Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

In Set: there are isomorphisms natural in X and Z

HomSet

(
X × Y ,Z ) ∼= HomSet(X ,HomSet(Y ,Z )

)
Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



Some examples of the product-hom adjunction
In Hask:

HomHask

(
(a, b), c

) ∼= HomHask

(
a, b → c

)
.

Exercise (with a one word answer from the standard prelude)

Define the forwards isomorphism in Haskell by writing

I idiomatize :: ((a, b) -> c) -> (a -> (b -> c))

In Set: there are isomorphisms natural in X and Z

HomSet

(
X × Y ,Z ) ∼= HomSet(X ,HomSet(Y ,Z )

)
Exercise (from Linderholm, Mathematics Made Difficult)

Prove that zxy = (zy )x for x , y , z ∈ N0.

In mod-CG and mod-CG for H a subgroup of G :

HomCG (X ⊗CH CG ,Z ) ∼= HomCH
(
X ,HomCG (CG ,Z )

)
or using standard notation for induction and restriction,

HomCG (X
xG

H
,Z ) ∼= HomCH(X ,Z

yG

H
).

This is Frobenius reciprocity. A deep result true for trivial reasons.



§2: A free-forgetful monad
Let X be a set. The free monoid on X is the set of all words in X
with concatenation as the product.
I Let F (X ) be the free monoid on the set X .
I Let U(N) be the underlying set of the monoid N.

Thus we have functors F : Set→Mon, U : Mon→ Set. For
example: F{�}={∅,�,��,���, . . .} and U(N0,+)={0, 1, 2, . . .}.
Claim
Let X ∈ Set and let N ∈Mon. Then

HomMon

(
F (X ),N)

) ∼= HomSet

(
X ,U(N)

)
.

Let M = UF : Set→ Set. For instance

M
{
w , o, r , d , s} = {word , sword , door , roodwords, . . .}

Question. Let X be a set. What is M(M(X ))?

Exercise
Formally words are tuples and F (X ) =

⊔
n≥0 X

n, where the

monoid product is concatenation of tuples. Does M2 = M hold? Is
there a natural isomorphism µ : M2 ∼= M?
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§3: The mathematical definition of monads
Let D be a category. A monad is a functor M : D → D together
with natural transformations
I µ : M2 → M (join)
I η : idD → M (unit)

such that the diagrams below commute.

M
η // M2

µ

��
M

M3 Mµ //

µM
��

M2

µ

��
M2 µ // M

Example (M(X ) =
⊔

n≥0 X
n, the free monoid monad)

We saw that µ : M2 → M is defined by ‘remove inner parentheses’:

µ{w ,o,r ,d ,s}
(
(d , o, o, r), (w , o, r , d)

)
= (d , o, o, r ,w , o, r , d , s)

The unit η : idSet → Set is defined on each set X so that
ηX : X →

⊔
n≥0 X

n is the canonical inclusion. For instance
η{w ,o,r ,d ,s}x = (x) for each x ∈ {w , o, r , d , s} and

ηM{w ,o,r ,d ,s}(d , o, o, r) = ((d , o, o, r)).



The infamous one-line definition

Saunders MacLane, Categories for the working
mathematician

All told, a monad in X is just a monoid in the
category of endofunctors of X , with product ×
replaced by composition of endofunctors and
unit set by the identity endofunctor

James Ivry, A brief incomplete, and mostly
wrong history of programming languages

Wadler tries to appease critics [of Haskell 1997]
by explaining that: “A monad is a monoid in the
category of endofunctors: what’s the problem?”



§4: Monads in the Haskell category Hask
Type :info Functor and :info Monad at the Haskell prompt:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor m => Monad m where

unit :: a -> m a

join :: m m a -> m a

(>>=) :: m a -> (a -> m b) -> m b

mx >>= f = join (fmap f mx)

And here is a complete definition of the list monad

instance Functor [] where fmap f xs = map f xs

instance Monad [] where unit x = [x]; join = concat

I have to confess that in fact Haskell expects you to define >>= and unit derives all
the rest, including fmap. (Except that recent versions make you define an Applicative
instance.) And, for reasons that made sense when monads were often used for IO, unit
is called return. But it could work exactly as this slide claims.

And on the theme of excusable oversimplifications, I should also admit that, without
an explicit type declaration, the function f b x = if b then floor x else floor

(x+1) gets the polymorphic type f :: (RealFrac a, Integral p) => Bool -> a

-> p. But I didn’t want to drag in typeclasses on the first slide.



§4: Monads in the Haskell category Hask
Type :info Functor and :info Monad at the Haskell prompt:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor m => Monad m where

unit :: a -> m a

join :: m m a -> m a

(>>=) :: m a -> (a -> m b) -> m b

mx >>= f = join (fmap f mx)

And here is a complete definition of the list monad

instance Functor [] where fmap f xs = map f xs

instance Monad [] where unit x = [x]; join = concat

I have to confess that in fact Haskell expects you to define >>= and unit derives all
the rest, including fmap. (Except that recent versions make you define an Applicative
instance.) And, for reasons that made sense when monads were often used for IO, unit
is called return. But it could work exactly as this slide claims.

And on the theme of excusable oversimplifications, I should also admit that, without
an explicit type declaration, the function f b x = if b then floor x else floor

(x+1) gets the polymorphic type f :: (RealFrac a, Integral p) => Bool -> a

-> p. But I didn’t want to drag in typeclasses on the first slide.



§4: Monads in the Haskell category Hask
Type :info Functor and :info Monad at the Haskell prompt:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Functor m => Monad m where

unit :: a -> m a

join :: m m a -> m a

(>>=) :: m a -> (a -> m b) -> m b

mx >>= f = join (fmap f mx)

And here is a complete definition of the list monad

instance Functor [] where fmap f xs = map f xs

instance Monad [] where unit x = [x]; join = concat

I have to confess that in fact Haskell expects you to define >>= and unit derives all
the rest, including fmap. (Except that recent versions make you define an Applicative
instance.) And, for reasons that made sense when monads were often used for IO, unit
is called return. But it could work exactly as this slide claims.

And on the theme of excusable oversimplifications, I should also admit that, without
an explicit type declaration, the function f b x = if b then floor x else floor

(x+1) gets the polymorphic type f :: (RealFrac a, Integral p) => Bool -> a

-> p. But I didn’t want to drag in typeclasses on the first slide.



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



Haskell has exactly two special pieces of syntax: list comprehension
and ‘do’ notation:

I [(x,y) | x <- [1,2,3], y <- [4,5]]

I do x <- [1,2,3]; y <- [4,5]; unit (x,y)

I [1,2,3] >>= \x -> [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = [4,5] >>= \y -> unit (x,y)

I join (fmap f [1,2,3]) where

f x = join (fmap g [4,5]) where g y = [(x,y)]

I join (fmap f [1,2,3]) where

f x = join [[(x,4)], [(x,5)]]

I join (fmap f [1,2,3]) where

f x = [(x,4), (x,5)]

I join [(1,4),(1,5)], [(2,4),(2,5)], [(3,4),(3,5)]]

all evaluate to [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]



The programmable semicolon
Using default lists,
I do x <- [1,2,3]; y <- [4,5..]; unit (x,y)

 [(1,4),(1,5),(1,6), ...

Because of lazy evaluation there’s no problem with the infinite
stream, except that it means we never get beyond the head of
[1,2,3].
newtype DiagonalList a = DL {unDL :: [a]}

deriving (Functor, Show)

instance Monad DiagonalList where

unit x = DL [x]

join = concat . stripe

where stripe :: [[a]] -> [[a]] returns the diagonal stripes
of a list of a list. We now run the same computation in the
diagonal list monad:
I do x <- DL [1,2,3]; y <- DL [4,5..]; unit (x,y)

 DL [(1,4),(1,5),(2,4),(1,6),(2,5),(3,4)..

As defined join has type [[a]]->[[a]] not DL DL a -> DL a

and in truth join = DL . concat . stripe . map unDL . unDL
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I do x <- [1,2,3]; y <- [4,5..]; unit (x,y)

 [(1,4),(1,5),(1,6), ...

Because of lazy evaluation there’s no problem with the infinite
stream, except that it means we never get beyond the head of
[1,2,3].
newtype DiagonalList a = DL {unDL :: [a]}

deriving (Functor, Show)

instance Monad DiagonalList where

unit x = DL [x]

join = concat . stripe

where stripe :: [[a]] -> [[a]] returns the diagonal stripes
of a list of a list. We now run the same computation in the
diagonal list monad:
I do x <- DL [1,2,3]; y <- DL [4,5..]; unit (x,y)

 DL [(1,4),(1,5),(2,4),(1,6),(2,5),(3,4)..

As defined join has type [[a]]->[[a]] not DL DL a -> DL a

and in truth join = DL . concat . stripe . map unDL . unDL



§5: In praise of types

Question. Write ¬a for a =⇒ ⊥, i.e. ‘a implies false’. Which of
the following are tautologies?

I a =⇒ a

I a =⇒ (b =⇒ a)

I (a =⇒ b) =⇒ a

I
(
a =⇒ (b =⇒ c)

)
=⇒ (a =⇒ b) =⇒ (a =⇒ c)

I a =⇒ ¬¬a
I ¬¬a =⇒ a

I ((a =⇒ b) =⇒ a) =⇒ a

Answer, all except (a =⇒ b) =⇒ a. Moreover all the tautologies
except the last two can be proved in intuitionistic logic. Why?
Because, replacing =⇒ with → they are the types of Haskell
programs.

This is the Curry–Howard correspondence between mathematical
proofs and computer programs.
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The type checker is your friend (in Haskell)
Recall the function f : Bool -> Double -> Integer defined by

f b x = if b then floor x else floor (x+1)

I In Haskell, if you forget which order the arguments come in,
the interpreter/compiler will give you a helpful error message
> f 3.5 False

<interactive>:88:7: error:

Couldn’t match expected type ‘Double’ with actual

type ‘Bool’.

• In the second argument of ‘f’, namely ‘False’

I In Magma, the interpreter will wait until you’ve done a long
calculation, and then pounce:
function f(b, x); if b then return Floor(x); else ..

^Runtime error in if: Logical expected

I In C, the compiler need neither notice nor care and, under the
rules of undefined behaviour, your program might erase your
user directory. The Haskell type checker promises this can’t
happen, since deleteFile :: IO () is in the IO monad.



§6: Every adjunction defines a monad
Let L : D → C and R : C → D be adjoint functors, so

HomC(Lx , z) ∼= HomD(x ,Rz)

naturally in x ∈ D and z ∈ C. For instance
I L = −× Y : Set→ Set; R = HomSet(Y ,−) : Set→ Set,
I L = F : Set→Mon; R = U : Mon→ Set.

Theorem
The composition RL : D → D is a monad in a canonical way.

Why you might believe this.

Pretend that L is ‘free’ and R is ‘forget’. Forget R. Then ‘free on
free’ is no more complicated than ‘free’, and there is a canonical
unit map from X into the ‘free thing’ on X .



§6: Every adjunction defines a monad
Let L : D → C and R : C → D be adjoint functors, so

HomC(Lx , z) ∼= HomD(x ,Rz)

naturally in x ∈ D and z ∈ C. For instance
I L = −× Y : Set→ Set; R = HomSet(Y ,−) : Set→ Set,
I L = F : Set→Mon; R = U : Mon→ Set.

Theorem
The composition RL : D → D is a monad in a canonical way.

The canonical way to define unit and join is by chasing through the
adjunction to get the only maps that can possibly be defined:
I η : idD → M is defined so that ηx is the image of idLx under

the isomorphism HomC(Lx , Lx) ∼= HomD
(
x ,RLx

)
I µ is the natural transformation

M2 = (RL)(RL) = R(LR)L
RεL7−→ RidCL = RL = M

where εz : LRz → z is the image of idRz under the
isomorphism HomC(Rz ,Rz) ∼= HomD

(
LRz , z

)
.



§7: Every monad comes from an adjunction
Let M : D → D be a monad. An M-algebra is an object z ∈ D
together with a map Mz

ϑ→ z such that the diagrams below
commute.

z
η // Mz

ϑ

��
z

M2z
µ //

Mϑ
��

Mz

ϑ

��
Mz

ϑ // z

The Eilenberg–Moore category DM is the category of M algebras.
The object Mx is a T -algebra with maps µ : M2x → x . It satisfies

HomDM

( M2x
µ��

Mx

,
Mz
ϑ��

z

)
∼= HomD(x , z)

Hence

I F : D → DM defined by Fx = M2x
µ

M x

I U : DM → D defined by U(Mz
ϑ−→ z) = z

are adjoint functors. Since U(F (x)) = Mx , the monad M comes
from an adjunction.



Algebras for monads can be remarkably deep. Algebras for the
I free monoid monad are monoids;
I power set monad are associative, symmetric, idempotent

binary operations;
I ultfrafilter monad are compact Hausdorff spaces;
I distribution monad on a set of size n are divisions of the

n-vertex simplex into n convex sets, one containing each
vertex;

I state monad on Hask are mnemoids, a functional version of
global state.

We saw that ‘induce then restrict’ is an instance of the state monad
from the product-hom adjunction, interpreted in module categories.

Proposition

Let H be a subgroup of G and let Ω = G/H be the G-set of
H-cosets. An F2-algebra for the ‘induce to G then restrict’ monad
on F2H-mod is a union ∆ of H-orbits on Ω such that

ω, ωg , ωg ′ ∈ ∆ =⇒ ωgg ′ ∈ ∆

for all ω ∈ Ω and g , g ′ ∈ G.



Thank you!


